亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Models Compared to Experimental Variability for the Prediction of CYP3A4 Time-Dependent Inhibition

很深的时间 计算生物学 人工智能 计算机科学 计量经济学 生物 数学 古生物学
作者
Andrin Fluetsch,Markus Trunzer,Grégori Gerebtzoff,Raquel Rodríguez-Pérez
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:37 (4): 549-560 被引量:5
标识
DOI:10.1021/acs.chemrestox.3c00305
摘要

Most drugs are mainly metabolized by cytochrome P450 (CYP450), which can lead to drug–drug interactions (DDI). Specifically, time-dependent inhibition (TDI) of CYP3A4 isoenzyme has been associated with clinically relevant DDI. To overcome potential DDI issues, high-throughput in vitro assays were established to assess the TDI of CYP3A4 during the discovery and lead optimization phases. However, in silico machine learning models would enable an earlier and larger-scale assessment of TDI potential liabilities. For CYP inhibition, most modeling efforts have focused on highly imbalanced and small data sets. Moreover, assay variability is rarely considered, which is key to understand the model's quality and suitability for decision-making. In this work, machine learning models were built for the prediction of TDI of CYP3A4, evaluated prospectively, and compared to the variability of the experimental assay. Different modeling strategies were investigated to assess their influence on the model's performance. Through multitask learning, additional data sets were leveraged for model building, coming from public databases, in-house CYP-related assays, or other pharmaceutical companies (federated learning). Apart from the numerical prediction of inactivation rates of CYP3A4 TDI, three-class predictions were carried out, giving a negative (inactivation rate kobs < 0.01 min–1), weak positive (0.01 ≤ kobs ≤ 0.025 min–1), or positive (kobs > 0.025 min–1) output. The final multitask graph neural network model achieved misclassification rates of 8 and 7% for positive and negative TDI, respectively. Importantly, the presented deep learning-based predictions had a similar precision to the reproducibility of in vitro experiments and thus offered great opportunities for drug design, early derisk of DDI potential, and selection of experiments. To facilitate CYP inhibition modeling efforts in the public domain, the developed model was used to annotate ∼16 000 publicly available structures, and a surrogate data set is shared as Supporting Information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fairy完成签到,获得积分10
47秒前
小二郎应助高大的羿采纳,获得10
1分钟前
1分钟前
WXKennyS发布了新的文献求助10
1分钟前
王饱饱完成签到 ,获得积分10
2分钟前
ljl86400完成签到,获得积分10
2分钟前
2分钟前
pursu发布了新的文献求助30
2分钟前
不安的未来完成签到,获得积分10
3分钟前
pursu完成签到,获得积分10
3分钟前
blenx完成签到,获得积分10
3分钟前
yf完成签到 ,获得积分10
3分钟前
李健应助科研通管家采纳,获得10
3分钟前
4分钟前
慕青发布了新的文献求助10
4分钟前
SCI完成签到,获得积分10
4分钟前
4分钟前
WXKennyS发布了新的文献求助10
5分钟前
默默完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
陈彦希发布了新的文献求助10
5分钟前
Nikki发布了新的文献求助10
6分钟前
6分钟前
Nikki完成签到,获得积分10
6分钟前
6分钟前
sissie发布了新的文献求助10
6分钟前
李健应助sissie采纳,获得10
7分钟前
李小强完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
MaKJ发布了新的文献求助10
8分钟前
8分钟前
8分钟前
Mingyue123发布了新的文献求助10
8分钟前
yb完成签到,获得积分10
8分钟前
weibo完成签到,获得积分10
9分钟前
PALMS发布了新的文献求助10
9分钟前
PALMS完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357085
求助须知:如何正确求助?哪些是违规求助? 4488652
关于积分的说明 13972405
捐赠科研通 4389765
什么是DOI,文献DOI怎么找? 2411715
邀请新用户注册赠送积分活动 1404271
关于科研通互助平台的介绍 1378414