A Contactless Breathing Pattern Recognition System Using Deep Learning and WiFi Signal

计算机科学 卷积神经网络 预处理器 人工智能 呼吸 语音识别 呼吸频率 深度学习 模式识别(心理学) 医学 血压 解剖 放射科 心率
作者
Dou Fan,Xiaodong Yang,Nan Zhao,Lei Guan,Malik Muhammad Arslan,Muneeb Ullah,Muhammad Ali Imran,Qammer H. Abbasi
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 23820-23834 被引量:15
标识
DOI:10.1109/jiot.2024.3386645
摘要

Breathing pattern is a representation of human breathing in the rate, depth, and rhythm, which can reflect physical and mental health conditions. Capturing and identifying abnormal breathing patterns can help localize associated disorders and have important implications for the patient or the potential patient. In this paper, a breathing patterns recognition system is proposed to monitor and identify abnormal breathing patterns in a contactless, unobtrusive and comfortable way. The system utilize the designed prototype based on WiFi signal and deep learning architecture to achieve the reliable measurement and recognition of respiratory patterns. We first develop a series of data preprocessing method to capture accurately the time-domain breathing signal from received data. Then, we apply a combined convolutional–long short-term memory (CNN-LSTM) network model to classify six distinct respiratory patterns (Eupnea, Tachypnea, Bradypnea, Biots, Cheyne–Stokes, and Kussmaul). The experimental results demonstrate that the proposed system have the ability to effectively classify the afore-mentioned six breathing patterns, which combines a series of novel data processing methods with the obtained CNN-LSTM model. The accuracy, precision, recall and F1-scores obtained by the CNN-LSTM model on the collected test set were 97.8%, 97.9%, 97.8% and 97.8%, respectively. In addition, the proposed system achieved 96.7%, 97.5%, and 98.1% recognition accuracy in different indoor environments. Overall, the proposed contactless breathing patterns recognition system validates the feasibility of long-term continuous respiratory patterns recognition, and provides a potential solution for the auxiliary diagnosis of diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qh0305完成签到,获得积分10
1秒前
2秒前
hhhhhhhh发布了新的文献求助30
2秒前
小葱头完成签到,获得积分10
3秒前
搜集达人应助一郭红烧肉采纳,获得10
3秒前
gloval发布了新的文献求助10
3秒前
moneymonoo发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
mumu完成签到,获得积分10
5秒前
5秒前
苽峰发布了新的文献求助10
6秒前
7秒前
giggle完成签到,获得积分10
7秒前
James发布了新的文献求助10
7秒前
皮戾完成签到,获得积分10
7秒前
小蘑菇应助幽默紫菜采纳,获得10
8秒前
善学以致用应助李杰采纳,获得10
8秒前
李健应助zero采纳,获得10
8秒前
科研通AI6应助郭志晟采纳,获得10
9秒前
9秒前
ding应助科研通管家采纳,获得10
9秒前
Ava应助cjg采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得30
9秒前
ding应助科研通管家采纳,获得10
9秒前
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533210
求助须知:如何正确求助?哪些是违规求助? 4621604
关于积分的说明 14579314
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499451
邀请新用户注册赠送积分活动 1479304
关于科研通互助平台的介绍 1450504