Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes

结直肠癌 基因 遗传学 生物 计算生物学 东亚 癌症 地理 中国 考古
作者
Zhishan Chen,Xingyi Guo,Ran Tao,Jeroen R. Huyghe,Philip Law,Ceres Fernández‐Rozadilla,Jie Ping,Guochong Jia,Jirong Long,Chao Li,Quanhu Shen,Yuhan Xie,Maria Timofeeva,Minta Thomas,Stephanie L. Schmit,Virginia Díez‐Obrero,Matthew A.M. Devall,Ferrán Moratalla-Navarro,Juan Fernández‐Tajes,Claire Palles
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:15 (1) 被引量:6
标识
DOI:10.1038/s41467-024-47399-x
摘要

Abstract Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助大方的若山采纳,获得10
刚刚
科研通AI5应助一自文又欠采纳,获得10
刚刚
niu完成签到,获得积分20
1秒前
欢呼惜梦发布了新的文献求助10
2秒前
Zhang发布了新的文献求助10
2秒前
2秒前
3秒前
Akim应助又小又胖的小胖采纳,获得10
3秒前
greenxvatit发布了新的文献求助10
3秒前
aqiuyuehe发布了新的文献求助10
3秒前
3秒前
XHY123完成签到,获得积分10
5秒前
vincent完成签到,获得积分10
6秒前
科研通AI5应助Crazy_Runner采纳,获得10
6秒前
香蕉觅云应助犹豫酸奶采纳,获得10
6秒前
传奇3应助tttp采纳,获得10
6秒前
CodeCraft应助Shell采纳,获得10
6秒前
白白完成签到,获得积分10
7秒前
脑洞疼应助小薛采纳,获得10
7秒前
7秒前
wen发布了新的文献求助10
8秒前
kirakira发布了新的文献求助10
8秒前
cctv18应助纸之治治采纳,获得10
8秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
在云里爱与歌完成签到,获得积分10
9秒前
greenxvatit完成签到,获得积分10
9秒前
柯柯发布了新的文献求助10
9秒前
SYLH应助fz采纳,获得10
10秒前
大个应助111采纳,获得10
10秒前
橙子完成签到 ,获得积分10
11秒前
加油完成签到,获得积分20
12秒前
12秒前
深情安青应助bsc采纳,获得10
12秒前
小马甲应助ning采纳,获得10
12秒前
12秒前
12秒前
Nacy完成签到 ,获得积分10
13秒前
13秒前
coolkid应助aqiuyuehe采纳,获得20
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832287
求助须知:如何正确求助?哪些是违规求助? 3374698
关于积分的说明 10485946
捐赠科研通 3094442
什么是DOI,文献DOI怎么找? 1703605
邀请新用户注册赠送积分活动 819491
科研通“疑难数据库(出版商)”最低求助积分说明 771587