脊髓损伤
生活质量(医疗保健)
泌尿系统
膀胱
脊髓
表型
医学
生物
内科学
精神科
护理部
生物化学
基因
作者
Blayne Welk,Tianyue Zhong,Jeremy B. Myers,John T. Stoffel,Sean Elliot,Sara Lenherr,Daniel J. Lizotte
标识
DOI:10.1097/ju.0000000000003984
摘要
Patients with spinal cord injuries (SCIs) experience variable urinary symptoms and quality of life (QOL). Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.
科研通智能强力驱动
Strongly Powered by AbleSci AI