亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human and Machine: The Impact of Machine Input on Decision Making Under Cognitive Limitations

人类多任务处理 计算机科学 机器学习 人工智能 认知 灵活性(工程) 过程(计算) 人机系统 风险分析(工程) 认知心理学 心理学 医学 统计 数学 神经科学 操作系统
作者
Tamer Boyacι,Caner Canyakmaz,Francis de Véricourt
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (2): 1258-1275 被引量:46
标识
DOI:10.1287/mnsc.2023.4744
摘要

The rapid adoption of artificial intelligence (AI) technologies by many organizations has recently raised concerns that AI may eventually replace humans in certain tasks. In fact, when used in collaboration, machines can significantly enhance the complementary strengths of humans. Indeed, because of their immense computing power, machines can perform specific tasks with incredible accuracy. In contrast, human decision makers (DMs) are flexible and adaptive but constrained by their limited cognitive capacity. This paper investigates how machine-based predictions may affect the decision process and outcomes of a human DM. We study the impact of these predictions on decision accuracy, the propensity and nature of decision errors, and the DM’s cognitive efforts. To account for both flexibility and limited cognitive capacity, we model the human decision-making process in a rational inattention framework. In this setup, the machine provides the DM with accurate but sometimes incomplete information at no cognitive cost. We fully characterize the impact of machine input on the human decision process in this framework. We show that machine input always improves the overall accuracy of human decisions but may nonetheless increase the propensity of certain types of errors (such as false positives). The machine can also induce the human to exert more cognitive efforts, although its input is highly accurate. Interestingly, this happens when the DM is most cognitively constrained, for instance, because of time pressure or multitasking. Synthesizing these results, we pinpoint the decision environments in which human-machine collaboration is likely to be most beneficial. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4744 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯一一应助橙子采纳,获得10
12秒前
科研通AI5应助橙子采纳,获得10
12秒前
科研通AI5应助橙子采纳,获得10
12秒前
科研通AI5应助橙子采纳,获得10
12秒前
科研通AI5应助橙子采纳,获得10
12秒前
Delire完成签到,获得积分10
23秒前
领导范儿应助hqc采纳,获得10
25秒前
35秒前
hqc发布了新的文献求助10
43秒前
nhh发布了新的文献求助20
49秒前
Lain完成签到,获得积分10
1分钟前
喔喔佳佳L完成签到 ,获得积分10
2分钟前
2分钟前
Owllight发布了新的文献求助10
2分钟前
Owllight完成签到,获得积分20
3分钟前
George完成签到,获得积分10
3分钟前
汉堡包应助hqc采纳,获得10
3分钟前
3分钟前
hqc发布了新的文献求助10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
碗碗豆喵完成签到 ,获得积分10
4分钟前
葱饼完成签到 ,获得积分10
4分钟前
点心完成签到,获得积分10
4分钟前
GRATE完成签到 ,获得积分10
4分钟前
科研通AI2S应助expoem采纳,获得10
4分钟前
科研搬运工完成签到,获得积分10
5分钟前
yuiip完成签到 ,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
6分钟前
实验品626完成签到 ,获得积分10
7分钟前
在水一方应助科研通管家采纳,获得10
7分钟前
科研通AI5应助krajicek采纳,获得10
8分钟前
Jasper应助在努力了采纳,获得30
8分钟前
8分钟前
Waymaker发布了新的文献求助10
8分钟前
无花果应助Waymaker采纳,获得10
8分钟前
Waymaker完成签到 ,获得积分10
9分钟前
9分钟前
在努力了发布了新的文献求助30
9分钟前
liwang9301完成签到,获得积分10
9分钟前
科目三应助科研通管家采纳,获得10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244188
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508