4D High-Resolution Imagery of Point Clouds for Automotive mmWave Radar

计算机科学 雷达成像 人工智能 计算机视觉 雷达 点云 图像分辨率 遥感 电信 地理
作者
Mengjie Jiang,Gang Xu,Hao Pei,Zeyun Feng,Shuai Ma,Hui Zhang,Wei Hong
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 998-1012 被引量:20
标识
DOI:10.1109/tits.2023.3258688
摘要

In the community of automotive millimeter wave radar, the recently developed concept of four-dimensional (4D) radar can provide high-resolution point clouds image with enhanced imaging performance. Currently, the density of point clouds for single-frame image is usually too sparse to satisfy the demands of target classification and recognition due to the limitation of Doppler and angle resolutions. To address the aforementioned issues, a novel algorithm is proposed for 4D high-resolution imagery generation of point clouds with extremely high Doppler and angle resolutions in this paper. For high Doppler resolution with high-dynamic, a novel velocity ambiguity resolution algorithm is proposed using a dual pulse repetition frequency (dual-PRF) waveform design embedded in an innovative time-division multiplexing & Doppler-division multiplexing MIMO (TDM-DDM-MIMO) framework. Meanwhile, an attractive complex-valued deep convolutional network (CV-DCN) of super-resolution direction-of-arrival (DOA) estimation is proposed only using single-frame data. To be specific, a spatial smoothing operator on array data is applied as input of the network, and a CV-DCN is designed to learn the transformation of the spatial spectrum from the end-to-end to effectively protect the spectrum extraction. Furthermore, experimental analysis is performed to confirm the effectiveness of the proposed super-resolution DOA estimation algorithm. Finally, the 4D high-resolution imagery of point clouds is obtained by experiments in the parking lot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助肿瘤柳叶刀采纳,获得10
1秒前
wang0626完成签到 ,获得积分10
2秒前
想读博的圆圆脸完成签到,获得积分10
2秒前
土拨鼠发布了新的文献求助10
2秒前
政政勇闯世界完成签到,获得积分10
3秒前
kkkkk发布了新的文献求助10
3秒前
烂漫的沂完成签到 ,获得积分10
3秒前
4秒前
aaaaaa发布了新的文献求助10
4秒前
4秒前
setfgrew发布了新的文献求助30
4秒前
ZhaoYu完成签到,获得积分10
4秒前
科研通AI2S应助Ruiruirui采纳,获得10
5秒前
kjh完成签到,获得积分10
5秒前
5秒前
高级后勤完成签到,获得积分10
6秒前
6秒前
东郭凝蝶完成签到 ,获得积分10
6秒前
xwj发布了新的文献求助10
7秒前
天天快乐应助北北采纳,获得10
7秒前
lancyab发布了新的文献求助10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得50
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
11哥应助科研通管家采纳,获得10
8秒前
冰魂应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
杭谷波完成签到,获得积分20
8秒前
LHL关闭了LHL文献求助
9秒前
大个应助段段采纳,获得10
9秒前
Jasper应助提提在干嘛采纳,获得10
9秒前
9秒前
胡凉水发布了新的文献求助10
10秒前
甜美的月饼给甜美的月饼的求助进行了留言
10秒前
肆无忌惮发布了新的文献求助10
10秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846