亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network

联营 人工智能 模式识别(心理学) 特征(语言学) 计算机科学 瓶颈 频道(广播) 数学 数据库 计算机网络 哲学 语言学 嵌入式系统
作者
Yulong Nan,Huichun Zhang,Yong Zeng,Jiaqiang Zheng,Yufeng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:208: 107780-107780 被引量:71
标识
DOI:10.1016/j.compag.2023.107780
摘要

In a densely planted orchard, factors such as light variation, branch occlusion, and fruit in non-picking rows had a great impact on the pitaya detection accuracy. In this study, a new WGB-YOLO network was developed and tested for multi-class pitaya fruits detection in target picking rows. The proposed WFE-C4 module was obtained by adding two wings feature enhancement structure based on Bottleneck and cascading MetaAconC functions, which independently enhanced feature extraction from the channel and spatial dimensions. A backbone network with WFE-C4 to replace YOLOv3′s Darknet53 was constructed. The proposed GF-SPP used average pooling and global average pooling instead of 2 maximum pooling in SPP, and the global average pooling features were used as independent channels to strengthen the average and maximum pooling features respectively, which simultaneously achieved multi-scale fusion of features and feature enhancement. The new WGB-YOLO network used a Bi-FPN structured head network to achieve a balanced fusion of multi-scale features. The tests showed that the mAP of multi-lass pitaya in the target picking rows was 86.0% using WGB-YOLO detection, while the AP of NO, FCC, and OB fruit were 96.0%, 84.4%, and 77.6%, respectively. WGB-YOLO improved the AP of the original model for detecting OB fruits by 10.5%, which indicated a significant improvement in model detection performance. Compared with 8 other deep networks such as YOLOv7, WGB-YOLO obtained the highest mAP for detecting multi-class pitaya while maintaining a better detection speed. WGB-YOLO showed good performance in detecting pitaya in densely pitaya planted orchards, which provided a technical foundation for fruit detection in robotic picking of the target rows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
21秒前
科研通AI2S应助www采纳,获得10
36秒前
41秒前
www完成签到,获得积分10
47秒前
Shallery完成签到,获得积分10
52秒前
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
6666发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Jasper应助6666采纳,获得10
1分钟前
朗源Wu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
6666发布了新的文献求助10
2分钟前
2分钟前
CipherSage应助6666采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
ABJ完成签到 ,获得积分10
3分钟前
nbtzy完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
满意人英发布了新的文献求助10
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
范特西完成签到 ,获得积分10
3分钟前
4分钟前
jiaxiangxia完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470118
求助须知:如何正确求助?哪些是违规求助? 4573056
关于积分的说明 14337956
捐赠科研通 4499985
什么是DOI,文献DOI怎么找? 2465503
邀请新用户注册赠送积分活动 1453862
关于科研通互助平台的介绍 1428483