Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network

联营 人工智能 模式识别(心理学) 特征(语言学) 计算机科学 瓶颈 频道(广播) 数学 数据库 计算机网络 哲学 语言学 嵌入式系统
作者
Yulong Nan,Huichun Zhang,Yong Zeng,Jiaqiang Zheng,Yufeng Ge
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:208: 107780-107780 被引量:32
标识
DOI:10.1016/j.compag.2023.107780
摘要

In a densely planted orchard, factors such as light variation, branch occlusion, and fruit in non-picking rows had a great impact on the pitaya detection accuracy. In this study, a new WGB-YOLO network was developed and tested for multi-class pitaya fruits detection in target picking rows. The proposed WFE-C4 module was obtained by adding two wings feature enhancement structure based on Bottleneck and cascading MetaAconC functions, which independently enhanced feature extraction from the channel and spatial dimensions. A backbone network with WFE-C4 to replace YOLOv3′s Darknet53 was constructed. The proposed GF-SPP used average pooling and global average pooling instead of 2 maximum pooling in SPP, and the global average pooling features were used as independent channels to strengthen the average and maximum pooling features respectively, which simultaneously achieved multi-scale fusion of features and feature enhancement. The new WGB-YOLO network used a Bi-FPN structured head network to achieve a balanced fusion of multi-scale features. The tests showed that the mAP of multi-lass pitaya in the target picking rows was 86.0% using WGB-YOLO detection, while the AP of NO, FCC, and OB fruit were 96.0%, 84.4%, and 77.6%, respectively. WGB-YOLO improved the AP of the original model for detecting OB fruits by 10.5%, which indicated a significant improvement in model detection performance. Compared with 8 other deep networks such as YOLOv7, WGB-YOLO obtained the highest mAP for detecting multi-class pitaya while maintaining a better detection speed. WGB-YOLO showed good performance in detecting pitaya in densely pitaya planted orchards, which provided a technical foundation for fruit detection in robotic picking of the target rows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RATHER完成签到,获得积分10
1秒前
QIN关注了科研通微信公众号
1秒前
wuhao0118完成签到,获得积分10
4秒前
萨摩耶发布了新的文献求助10
7秒前
HEIKU应助wuhao0118采纳,获得10
7秒前
地学韦丰吉司长完成签到,获得积分10
8秒前
xo发布了新的文献求助10
8秒前
TTYYI关注了科研通微信公众号
9秒前
11秒前
15秒前
QIN发布了新的文献求助10
18秒前
幻心完成签到,获得积分10
25秒前
25秒前
Sewerant完成签到 ,获得积分10
30秒前
36秒前
40秒前
40秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
小蘑菇应助科研通管家采纳,获得30
40秒前
Ava应助科研通管家采纳,获得10
41秒前
在水一方应助科研通管家采纳,获得10
41秒前
深情安青应助科研通管家采纳,获得10
41秒前
英俊的铭应助科研通管家采纳,获得30
41秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
科研应助科研通管家采纳,获得10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
41秒前
萨摩耶完成签到 ,获得积分10
41秒前
研友_VZG7GZ应助小元采纳,获得10
42秒前
荒野求生的青椒完成签到,获得积分10
43秒前
流沙无言发布了新的文献求助10
44秒前
48秒前
闪闪灭龙发布了新的文献求助10
48秒前
48秒前
冷傲机器猫完成签到,获得积分0
49秒前
18746005898完成签到 ,获得积分10
50秒前
何YI完成签到,获得积分10
50秒前
个性的丹亦完成签到,获得积分10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778437
求助须知:如何正确求助?哪些是违规求助? 3324161
关于积分的说明 10217227
捐赠科研通 3039379
什么是DOI,文献DOI怎么找? 1668012
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385