材料科学
光催化
电荷(物理)
方案(数学)
传输(计算)
纳米技术
光电子学
工程物理
化学工程
计算机科学
催化作用
粒子物理学
工程类
数学分析
物理
并行计算
化学
生物化学
数学
作者
Hongying Li,Jianjun Zhang,Bicheng Zhu,Bowen He,Chuanbiao Bie,Jiaguo Yu,Liuyang Zhang
标识
DOI:10.1002/adfm.202521318
摘要
Abstract Precise engineering of interfacial electron transfer is pivotal for advancing photocatalytic performance. Herein, a TiO 2 /CdS/Ni (CSTNi) core–shell photocatalyst featuring orchestrated interfacial charge transport is designed. Oxygen vacancies in TiO 2 serve as electron reservoirs, while interfacial Ti─S bonds accelerate carrier transfer across the TiO 2 /CdS (CST) interface. Simultaneously, Ni nanoparticles function as active sites, promoting rapid electron migration via Ni─S interfacial bonding. Notably, the d ‐orbital hybridization of transition metals (Ti and Ni) with the p orbitals of sulfur modulates the local electronic structure, synergistically enhancing interfacial electron dynamics. X‐ray absorption spectroscopy confirms the formation of Ti─S and Ni─S bonds with strong electronic coupling, while X‐ray photoelectron spectroscopy and density functional theory (DFT) calculations reveal directed charge migration at the CST and CdS/Ni interfaces. Femtosecond transient absorption (fs‐TA) spectroscopy demonstrates a marked acceleration of interfacial electron transfer, with CSTNi exhibiting a rate constant of 2.0 × 10 9 s −1 , significantly surpassing CdS/Ni (6.7 × 10 8 s −1 ). Benefiting from the engineered interfacial pathways, CSTNi achieves superior photocatalytic degradation of microplastics, concurrently delivering a remarkable H 2 evolution rate. This work introduces an strategy for coupling interfacial chemical bonding with cocatalyst engineering, offering new insights for the rational design of high‐efficiency photocatalytic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI