Multiview Temporal Graph Clustering

聚类分析 计算机科学 图形 人工智能 理论计算机科学
作者
Meng Liu,Ke Liang,Hao Yu,Lingyuan Meng,Siwei Wang,Sihang Zhou,Xinwang Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 1-14 被引量:3
标识
DOI:10.1109/tnnls.2025.3584384
摘要

As an emerging task, temporal graph clustering (TGC) is committed to clustering nodes on temporal graphs through interaction sequence-based batch-processing patterns. These patterns allow for more flexibility in finding a balance between time and space requirements than adjacency matrix-based static graph clustering. However, as a new task, TGC still has important unresolved challenges, such as insufficient information. This challenge manifests itself in a variety of problems in real-world datasets, including missing features (eigenvalues are missing or even nonexistent), long-tail nodes (most inactive nodes have little interaction), and noisy data (data is subject to anomalies, errors, and sparsity). These problems occur before training, making it difficult for the model to train well with insufficient information. To solve the challenge, we propose a method that introduces multiview clustering (MVC) into TGC, called MVTGC. Our method aims to perform data augmentation on the temporal graph by constructing multiple views to increase the information richness. In particular, we utilize different techniques to model a certain part of the temporal graph to generate enhanced views focusing on different angles. These views are combined into training through early fusion and late fusion and ultimately enhance the model's receptive field and information richness. Comparative experiments and a case study on real-world datasets demonstrate the significance and effectiveness of MVTGC, which achieves at most 10.48% performance improvement. The code and data are available at https://github.com/MGitHubL/MVTGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
光亮面包完成签到 ,获得积分10
1秒前
涵Allen发布了新的文献求助20
1秒前
1秒前
香蕉完成签到 ,获得积分10
1秒前
2秒前
zpc发布了新的文献求助10
2秒前
Orange应助陶醉的啤酒采纳,获得30
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
研友_ZGRvon完成签到,获得积分0
4秒前
123发布了新的文献求助30
4秒前
略略略完成签到,获得积分10
4秒前
蒋念寒发布了新的文献求助10
4秒前
酷酷百川发布了新的文献求助10
5秒前
汉堡包应助悠嘻嘻采纳,获得30
5秒前
5秒前
jzmulyl发布了新的文献求助10
5秒前
义气的面包完成签到,获得积分10
5秒前
XM完成签到,获得积分10
6秒前
leeee完成签到,获得积分10
6秒前
爆米花应助耙芋儿采纳,获得10
6秒前
隐形曼青应助唠叨的剑通采纳,获得10
6秒前
6秒前
流星雨完成签到 ,获得积分10
7秒前
7秒前
gqb发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
psy发布了新的文献求助30
7秒前
EKo完成签到,获得积分10
7秒前
7秒前
7秒前
传奇3应助慈祥的建辉采纳,获得30
7秒前
Tonsil01发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427790
求助须知:如何正确求助?哪些是违规求助? 4541692
关于积分的说明 14178129
捐赠科研通 4459258
什么是DOI,文献DOI怎么找? 2445268
邀请新用户注册赠送积分活动 1436498
关于科研通互助平台的介绍 1413803