A Fusion of Entropy-Enhanced Image Processing and Improved YOLOv8 for Smoke Recognition in Mine Fires

烟雾 熵(时间箭头) 人工智能 模式识别(心理学) 图像处理 计算机科学 环境科学 计算机视觉 统计物理学 数学 图像(数学) 物理 气象学 热力学
作者
Xiaowei Li,Yi Liu
出处
期刊:Entropy [MDPI AG]
卷期号:27 (8): 791-791
标识
DOI:10.3390/e27080791
摘要

Smoke appears earlier than flames, so image-based fire monitoring techniques mainly focus on the detection of smoke, which is regarded as one of the effective strategies for preventing the spread of initial fires that eventually evolve into serious fires. Smoke monitoring in mine fires faces serious challenges: the underground environment is complex, with smoke and backgrounds being highly integrated and visual features being blurred, which makes it difficult for existing image-based monitoring techniques to meet the actual needs in terms of accuracy and robustness. The conventional ground-based methods are directly used in the underground with a high rate of missed detection and false detection. Aiming at the core problems of mixed target and background information and high boundary uncertainty in smoke images, this paper, inspired by the principle of information entropy, proposes a method for recognizing smoke from mine fires by integrating entropy-enhanced image processing and improved YOLOv8. Firstly, according to the entropy change characteristics of spatio-temporal information brought by smoke diffusion movement, based on spatio-temporal entropy separation, an equidistant frame image differential fusion method is proposed, which effectively suppresses the low entropy background noise, enhances the detail clarity of the high entropy smoke region, and significantly improves the image signal-to-noise ratio. Further, in order to cope with the variable scale and complex texture (high information entropy) of the smoke target, an improvement mechanism based on entropy-constrained feature focusing is introduced on the basis of the YOLOv8m model, so as to more effectively capture and distinguish the rich detailed features and uncertain information of the smoke region, realizing the balanced and accurate detection of large and small smoke targets. The experiments show that the comprehensive performance of the proposed method is significantly better than the baseline model and similar algorithms, and it can meet the demand of real-time detection. Compared with YOLOv9m, YOLOv10n, and YOLOv11n, although there is a decrease in inference speed, the accuracy, recall, average detection accuracy mAP (50), and mAP (50–95) performance metrics are all substantially improved. The precision and robustness of smoke recognition in complex mine scenarios are effectively improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三十五发布了新的文献求助10
刚刚
浮游应助研友_V8Qmr8采纳,获得10
刚刚
charon完成签到,获得积分10
1秒前
JarryChao发布了新的文献求助10
1秒前
奋斗青年发布了新的文献求助200
2秒前
kay完成签到,获得积分10
2秒前
2秒前
害羞彩虹发布了新的文献求助10
3秒前
淡定自中发布了新的文献求助10
3秒前
3秒前
张青争完成签到,获得积分10
3秒前
冷静的天与完成签到,获得积分20
3秒前
Intjer完成签到,获得积分10
3秒前
乐乐应助时丶倾采纳,获得10
4秒前
虚幻馒头发布了新的文献求助10
5秒前
幽默千柔完成签到 ,获得积分10
5秒前
Moore完成签到,获得积分10
5秒前
Oyster完成签到,获得积分20
5秒前
hhh完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
雪原火狐发布了新的文献求助10
8秒前
可爱的函函应助内向初瑶采纳,获得10
8秒前
积极的语芹完成签到,获得积分10
8秒前
烟花应助害羞彩虹采纳,获得10
9秒前
逆时光发布了新的文献求助10
10秒前
10秒前
10秒前
超级桂花糕完成签到 ,获得积分10
11秒前
壮观定帮完成签到,获得积分10
11秒前
称心雁枫发布了新的文献求助10
12秒前
废柴完成签到,获得积分10
12秒前
12秒前
酷酷的老太完成签到,获得积分10
12秒前
13秒前
SciGPT应助刘雨森采纳,获得10
13秒前
lccnc发布了新的文献求助10
13秒前
qqq完成签到,获得积分10
13秒前
JarryChao完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351917
求助须知:如何正确求助?哪些是违规求助? 4484853
关于积分的说明 13960712
捐赠科研通 4384534
什么是DOI,文献DOI怎么找? 2409028
邀请新用户注册赠送积分活动 1401521
关于科研通互助平台的介绍 1375057