Instrument-Tissue-Guided Surgical Action Triplet Detection via Textual-Temporal Trail Exploration

动作(物理) 计算机科学 计算机视觉 人工智能 物理 量子力学
作者
Jialun Pei,Jiaan Zhang,Guanyi Qin,Kai Wang,Yueming Jin,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 5278-5289 被引量:2
标识
DOI:10.1109/tmi.2025.3590457
摘要

Surgical action triplet detection offers intuitive intraoperative scene analysis for dynamically perceiving laparoscopic surgical workflows and analyzing the interaction between instruments and tissues. The current challenge of this task lies in simultaneously localizing surgical instruments while performing more accurate surgical triplet recognition to enhance a comprehensive understanding of intraoperative surgical scenes. To fully leverage the spatial localization of surgical instruments for associating with triplet detection, we propose an Instrument-Tissue-Guided Triplet detector, termed ITG-Trip, which navigates the confluence of surgical action cues through instrument and tissue pseudo-localization labeling to optimize action triplet detection. For exploiting textual and temporal trails, our framework embraces a Visual-Linguistic Association (VLA) module that exploits a pre-trained text encoder to distill textual prior knowledge, enhancing semantic information in global visual features and compensating rare interaction class perception. Besides, we introduce a Mamba-enhanced Spatial-temporal Perception (MSP) decoder, which weaves Mamba and Transformer blocks to explore subject- and object-aware spatial and temporal information to improve the accuracy of action triplet detection in long-time sequence surgical videos. Experimental results on the CholecT50 benchmark indicate that our method significantly outperforms existing state-of-the-art methods in both instrument localization and action triplet detection. The code is available at: github.com/PJLallen/ITG-Trip.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼莉完成签到,获得积分10
1秒前
儒雅致远发布了新的文献求助50
2秒前
852应助元谷雪采纳,获得10
2秒前
Lven发布了新的文献求助30
2秒前
lll完成签到,获得积分10
2秒前
整挺好完成签到,获得积分10
2秒前
Lee发布了新的文献求助10
3秒前
充电宝应助隐形的星月采纳,获得10
3秒前
4秒前
4秒前
1111111111发布了新的文献求助10
4秒前
李爱国应助leo瀚采纳,获得10
4秒前
4秒前
5秒前
晰默发布了新的文献求助10
5秒前
天天快乐应助小菜狗采纳,获得10
6秒前
6秒前
lsh完成签到,获得积分10
7秒前
Big PAN Chicken完成签到,获得积分10
7秒前
善学以致用应助124dc采纳,获得10
7秒前
ZHANG发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
10秒前
在水一方应助刘厚麟采纳,获得10
10秒前
CipherSage应助DQ采纳,获得10
10秒前
CNYDNZB发布了新的文献求助10
10秒前
Rear21完成签到,获得积分10
11秒前
11秒前
11秒前
CodeCraft应助晰默采纳,获得10
11秒前
哦哟完成签到,获得积分10
12秒前
科研小农民完成签到,获得积分10
12秒前
12秒前
XRT发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
不解释发布了新的文献求助10
13秒前
hfgeyt发布了新的文献求助10
13秒前
哦哟发布了新的文献求助30
14秒前
屁颠小豪完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678745
求助须知:如何正确求助?哪些是违规求助? 4984392
关于积分的说明 15165526
捐赠科研通 4838563
什么是DOI,文献DOI怎么找? 2592579
邀请新用户注册赠送积分活动 1545849
关于科研通互助平台的介绍 1503995