Development and Validation of the Early Gastric Carcinoma Prediction Model in Post-Eradication Patients with Intestinal Metaplasia

医学 内科学 队列 接收机工作特性 人口 癌症 肠化生 幽门螺杆菌 胃肠病学 肿瘤科 人工智能 计算机科学 环境卫生
作者
Wulian Lin,Guanpo Zhang,Hong Chen,Wen Huang,Guilin Xu,Yunmeng Zheng,Chao Gao,Jin Zheng,Dazhou Li,Wen Wang
出处
期刊:Cancers [MDPI AG]
卷期号:17 (13): 2158-2158
标识
DOI:10.3390/cancers17132158
摘要

Background: Gastric cancer (GC) remains a major global health challenge, with rising incidence among patients post-Helicobacter pylori (H. pylori) eradication, particularly those with persistent intestinal metaplasia (IM). Current risk stratification tools are limited in this high-risk population. Aim: To develop, validate, and externally test a machine learning-based prediction model—termed the Early Gastric Cancer Model (EGCM)—for identifying early gastric cancer (EGC) risk in H. pylori-eradicated patients with IM, and to implement it as a web-based clinical tool. Methods: This retrospective, dual-center study enrolled 214 H. pylori-eradicated patients with histologically confirmed IM from 900 Hospital and Fujian Provincial People’s Hospital. The dataset was split into a training cohort (70%) and an internal validation cohort (30%), with an external test cohort from the second center. A total of 21 machine learning algorithms were screened using cross-validation and hyperparameter optimization. Boruta and SHAP analyses were employed for feature selection, and the final EGCM was constructed using the top five predictors: atrophy range, xanthoma, map-like redness (MLR), MLR range, and age. Model performance was evaluated via ROC curves, precision–recall curves, calibration plots, and decision curve analysis (DCA), and compared against conventional inflammatory biomarkers such as NLR and PLR. Results: The CatBoost algorithm demonstrated the best overall performance, achieving an AUC of 0.743 (95% CI: 0.70–0.80) in internal validation and 0.905 in the external test set. The EGCM exhibited superior discrimination compared to individual inflammatory markers (p < 0.01). Calibration analysis confirmed strong agreement between predicted and observed outcomes. DCA showed the EGCM yielded greater net clinical benefit. A web calculator was developed to facilitate clinical application. Conclusions: The EGCM is a validated, interpretable, and practical tool for stratifying EGC risk in H. pylori-eradicated IM patients across multiple centers. Its integration into clinical practice could improve surveillance precision and early cancer detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助满月采纳,获得10
1秒前
上官清秋完成签到,获得积分10
1秒前
2秒前
2秒前
快乐的安珊完成签到,获得积分10
2秒前
未若柳絮因风起完成签到,获得积分10
2秒前
3秒前
来年又清风完成签到,获得积分10
3秒前
Jesse发布了新的文献求助10
4秒前
科研通AI2S应助zhiwei采纳,获得10
4秒前
火柴发布了新的文献求助10
5秒前
ericzhouxx发布了新的文献求助10
5秒前
fth发布了新的文献求助20
5秒前
于你无瓜发布了新的文献求助10
6秒前
6秒前
嘻嘻完成签到,获得积分10
7秒前
7秒前
goo完成签到,获得积分20
7秒前
搜集达人应助hongxuezhi采纳,获得100
8秒前
8秒前
YUMI发布了新的文献求助10
8秒前
9秒前
seagull发布了新的文献求助10
10秒前
10秒前
10秒前
过时的音响完成签到,获得积分10
11秒前
junxi发布了新的文献求助10
11秒前
香蕉觅云应助kkkkk采纳,获得10
11秒前
所所应助qqq采纳,获得10
12秒前
12秒前
zzz发布了新的文献求助10
12秒前
CipherSage应助火柴采纳,获得10
12秒前
张虹完成签到,获得积分10
13秒前
你好包包完成签到,获得积分10
13秒前
wanci应助jjjjchou采纳,获得10
13秒前
炙热的炳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
Hello应助黑白采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487183
求助须知:如何正确求助?哪些是违规求助? 4586669
关于积分的说明 14410474
捐赠科研通 4517522
什么是DOI,文献DOI怎么找? 2475310
邀请新用户注册赠送积分活动 1461092
关于科研通互助平台的介绍 1434019