Leveraging Consensus Effect to Optimize Ranking in Online Discussion Boards

排名(信息检索) 计算机科学 知识管理 业务 营销 运筹学 过程管理 产业组织 运营管理 情报检索 经济 工程类
作者
Gad Allon,Joseph Carlstein,Yonatan Gur
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (6): 1701-1720
标识
DOI:10.1287/msom.2022.0451
摘要

Problem definition: Online discussion platforms (often referred to as discussion boards) are designed for facilitating remote discussions between users. To stimulate engagement (e.g., participation in the discussion), these platforms offer arriving users a ranked list of existing discussion comments. In this paper, we formalize the level of consensus in the discussion and study its impact on engagement and how it could be leveraged by ranking algorithms to increase engagement along the discussion path. Methodology/results: We collaborate with a leading online discussion board for education settings. Analyzing data from online discussions, we identify the level of consensus in the discussion as a new engagement driver. The presence of the consensus effect suggests that ranking algorithms should consider not only comments that would induce engagement in the present period but also ones that would maximize future engagement by managing the desired level of consensus. Based on this insight, we propose a new dynamic model for ranking optimization and a class of intuitive algorithms that, among other factors, account for the level of consensus when prescribing rankings that maximize engagement using a limited lookahead. In a randomized experiment consisting of eight discussion groups in an education setting, our proposed algorithm outperformed the approach used in current practice (that does not actively manage the level of consensus). Managerial implications: Our study proposes consensus as an essential factor in user engagement and in the design of user interface in online platforms and demonstrates the performance improvement that is achievable by leveraging it in the design of ranking algorithms in discussion boards. In doing so, our study suggests that online platforms may often benefit from rankings that build debate rather than an “echo chamber” of consensus. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0451 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助树野采纳,获得30
刚刚
朱颜完成签到,获得积分10
1秒前
1秒前
思源应助Mobius采纳,获得10
1秒前
dracovu完成签到,获得积分10
2秒前
adam完成签到,获得积分10
3秒前
狂野书易完成签到,获得积分10
3秒前
5秒前
浮游应助依于采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
gkads应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
科研通AI6应助发文章12138采纳,获得10
6秒前
郭丹丹完成签到 ,获得积分10
8秒前
9秒前
liu完成签到,获得积分10
10秒前
树野完成签到,获得积分10
11秒前
灵主完成签到,获得积分10
11秒前
11秒前
JERRY发布了新的文献求助10
13秒前
14秒前
酸奶巧克力完成签到,获得积分10
14秒前
14秒前
DJsky123发布了新的文献求助10
15秒前
kk完成签到 ,获得积分10
16秒前
单纯乘风发布了新的文献求助10
16秒前
Queenie发布了新的文献求助30
16秒前
THREE完成签到 ,获得积分10
16秒前
小梦完成签到,获得积分10
17秒前
冷酷的海露完成签到,获得积分20
18秒前
王帅关注了科研通微信公众号
18秒前
ATOM完成签到,获得积分10
18秒前
20秒前
ATOM发布了新的文献求助50
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898