Leveraging Consensus Effect to Optimize Ranking in Online Discussion Boards

排名(信息检索) 计算机科学 知识管理 业务 营销 运筹学 过程管理 产业组织 运营管理 情报检索 经济 工程类
作者
Gad Allon,Joseph Carlstein,Yonatan Gur
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (6): 1701-1720
标识
DOI:10.1287/msom.2022.0451
摘要

Problem definition: Online discussion platforms (often referred to as discussion boards) are designed for facilitating remote discussions between users. To stimulate engagement (e.g., participation in the discussion), these platforms offer arriving users a ranked list of existing discussion comments. In this paper, we formalize the level of consensus in the discussion and study its impact on engagement and how it could be leveraged by ranking algorithms to increase engagement along the discussion path. Methodology/results: We collaborate with a leading online discussion board for education settings. Analyzing data from online discussions, we identify the level of consensus in the discussion as a new engagement driver. The presence of the consensus effect suggests that ranking algorithms should consider not only comments that would induce engagement in the present period but also ones that would maximize future engagement by managing the desired level of consensus. Based on this insight, we propose a new dynamic model for ranking optimization and a class of intuitive algorithms that, among other factors, account for the level of consensus when prescribing rankings that maximize engagement using a limited lookahead. In a randomized experiment consisting of eight discussion groups in an education setting, our proposed algorithm outperformed the approach used in current practice (that does not actively manage the level of consensus). Managerial implications: Our study proposes consensus as an essential factor in user engagement and in the design of user interface in online platforms and demonstrates the performance improvement that is achievable by leveraging it in the design of ranking algorithms in discussion boards. In doing so, our study suggests that online platforms may often benefit from rankings that build debate rather than an “echo chamber” of consensus. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0451 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
louis完成签到,获得积分10
刚刚
刚刚
1秒前
含蓄戾完成签到,获得积分10
1秒前
zzj512682701完成签到,获得积分10
1秒前
1秒前
李Tt完成签到,获得积分10
1秒前
2秒前
向上的小v完成签到 ,获得积分10
2秒前
张哈哈发布了新的文献求助10
2秒前
前世的尘发布了新的文献求助10
2秒前
2秒前
御舟观澜完成签到,获得积分10
2秒前
Akim应助doudou采纳,获得10
3秒前
3秒前
临兵者完成签到 ,获得积分10
3秒前
4秒前
李闻闻发布了新的文献求助10
4秒前
今后应助一只猪采纳,获得10
5秒前
9℃发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
math123完成签到,获得积分10
6秒前
hautzhl完成签到,获得积分10
6秒前
zz完成签到,获得积分10
6秒前
7秒前
7秒前
CipherSage应助大七采纳,获得10
7秒前
jinzhituoyan完成签到,获得积分10
7秒前
8秒前
8秒前
wang完成签到,获得积分20
9秒前
端庄谷南完成签到 ,获得积分10
9秒前
圆锥香蕉应助轻松的忆雪采纳,获得20
10秒前
小饼干完成签到,获得积分10
12秒前
小白菜发布了新的文献求助20
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844