已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Leveraging Consensus Effect to Optimize Ranking in Online Discussion Boards

排名(信息检索) 计算机科学 知识管理 业务 营销 运筹学 过程管理 产业组织 运营管理 情报检索 经济 工程类
作者
Gad Allon,Joseph Carlstein,Yonatan Gur
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (6): 1701-1720
标识
DOI:10.1287/msom.2022.0451
摘要

Problem definition: Online discussion platforms (often referred to as discussion boards) are designed for facilitating remote discussions between users. To stimulate engagement (e.g., participation in the discussion), these platforms offer arriving users a ranked list of existing discussion comments. In this paper, we formalize the level of consensus in the discussion and study its impact on engagement and how it could be leveraged by ranking algorithms to increase engagement along the discussion path. Methodology/results: We collaborate with a leading online discussion board for education settings. Analyzing data from online discussions, we identify the level of consensus in the discussion as a new engagement driver. The presence of the consensus effect suggests that ranking algorithms should consider not only comments that would induce engagement in the present period but also ones that would maximize future engagement by managing the desired level of consensus. Based on this insight, we propose a new dynamic model for ranking optimization and a class of intuitive algorithms that, among other factors, account for the level of consensus when prescribing rankings that maximize engagement using a limited lookahead. In a randomized experiment consisting of eight discussion groups in an education setting, our proposed algorithm outperformed the approach used in current practice (that does not actively manage the level of consensus). Managerial implications: Our study proposes consensus as an essential factor in user engagement and in the design of user interface in online platforms and demonstrates the performance improvement that is achievable by leveraging it in the design of ranking algorithms in discussion boards. In doing so, our study suggests that online platforms may often benefit from rankings that build debate rather than an “echo chamber” of consensus. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0451 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onlyone完成签到,获得积分10
刚刚
huyu发布了新的文献求助10
1秒前
兰彻发布了新的文献求助10
2秒前
张皓123发布了新的文献求助10
3秒前
4秒前
CCsouljump完成签到 ,获得积分10
5秒前
王w发布了新的文献求助10
5秒前
6秒前
CC完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
思源应助moumou采纳,获得10
9秒前
Sherry_L发布了新的文献求助10
9秒前
张皓123完成签到,获得积分10
10秒前
11秒前
11秒前
serendipity发布了新的文献求助10
12秒前
科研通AI6应助xixi采纳,获得10
14秒前
科研通AI6应助xixi采纳,获得10
14秒前
萧衡完成签到 ,获得积分10
14秒前
15秒前
晴y完成签到 ,获得积分10
16秒前
18秒前
李健应助gty采纳,获得10
18秒前
Lucas应助tguczf采纳,获得10
18秒前
18秒前
大桶茄子完成签到,获得积分10
18秒前
Tsegeen发布了新的文献求助10
19秒前
19秒前
20秒前
雨辰完成签到,获得积分10
21秒前
21秒前
二牛完成签到,获得积分10
21秒前
mumuzi发布了新的文献求助10
21秒前
moumou发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611574
求助须知:如何正确求助?哪些是违规求助? 4695940
关于积分的说明 14889296
捐赠科研通 4726056
什么是DOI,文献DOI怎么找? 2545778
邀请新用户注册赠送积分活动 1510260
关于科研通互助平台的介绍 1473193