DGMM: A Deep Learning-Genetic Algorithm Framework for Efficient Lead Optimization in Drug Discovery

药物发现 铅(地质) 计算机科学 人工智能 遗传算法 深度学习 机器学习 药品 算法 计算生物学 生物信息学 医学 生物 药理学 古生物学
作者
Jiebin Fang,Churu Mao,Yuchen Zhu,Xiaohong Chen,Yun Huang,Wanjing Ding,Chang‐Yu Hsieh,Zhongjun Ma
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c01017
摘要

Lead optimization in drug discovery faces the dual challenge of maintaining structural diversity while preserving core molecular features and optimizing the balance between biological activity and drug-like properties. To address these challenges, we introduce the Deep Genetic Molecule Modification (DGMM) algorithm, a novel computational framework that synergistically integrates deep learning architectures with genetic algorithms for efficient molecular optimization. DGMM leverages a variational autoencoder (VAE) with an enhanced representation learning strategy that incorporates scaffold constraints during training, significantly improving the latent space organization to balance structural variation with scaffold retention. A multiobjective optimization strategy, combining Monte Carlo search and Markov processes, enables systematic exploration of the trade-offs between drug likeness and target activity. Evaluation results indicate that DGMM achieves state-of-the-art performance in activity optimization, generating structurally diverse, yet pharmacologically relevant compounds. To rigorously establish its utility, we first demonstrated its generalizability through extensive retrospective validation on three diverse targets (CHK1, CDK2, and HDAC8), reproducing their known optimization pathways. Building on this validated generalizability, we deployed DGMM in a prospective campaign, which culminated in the wet-lab discovery of novel ROCK2 inhibitors with a notable 100-fold increase in biological activity. This success establishes DGMM as an effective tool for structural optimization of drug molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科发布了新的文献求助10
刚刚
wangli发布了新的文献求助10
1秒前
1秒前
搜集达人应助屈苞络采纳,获得10
2秒前
sciress发布了新的文献求助10
2秒前
3秒前
Harish完成签到,获得积分10
3秒前
xinxinbaby完成签到,获得积分10
5秒前
gm发布了新的文献求助10
5秒前
MOD发布了新的文献求助30
6秒前
6秒前
8秒前
顾矜应助wwwddk采纳,获得30
8秒前
FashionBoy应助aojl90采纳,获得10
9秒前
Hello应助wangli采纳,获得10
9秒前
9秒前
缥缈以珊完成签到,获得积分10
10秒前
kaireinhardt发布了新的文献求助10
10秒前
聪明无颜完成签到,获得积分10
12秒前
13秒前
赘婿应助Senase采纳,获得10
13秒前
露露发布了新的文献求助10
13秒前
研友_VZG7GZ应助MOD采纳,获得10
14秒前
量子星尘发布了新的文献求助30
15秒前
Orange应助白樱恋曲采纳,获得10
15秒前
樱桃小丸子完成签到 ,获得积分10
15秒前
16秒前
16秒前
YAO完成签到 ,获得积分10
18秒前
xx发布了新的文献求助10
18秒前
寄托发布了新的文献求助10
18秒前
19秒前
19秒前
22秒前
M123456完成签到 ,获得积分10
22秒前
抉择发布了新的文献求助10
22秒前
樱桃小丸子关注了科研通微信公众号
22秒前
NexusExplorer应助天涯过客采纳,获得10
23秒前
23秒前
嘟嘟图图发布了新的文献求助10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138579
求助须知:如何正确求助?哪些是违规求助? 3675374
关于积分的说明 11618190
捐赠科研通 3369657
什么是DOI,文献DOI怎么找? 1851016
邀请新用户注册赠送积分活动 914247
科研通“疑难数据库(出版商)”最低求助积分说明 829126