A Multi-task Deep Learning Model for the Denoising, Interpolation, and Wavefield Separation of DAS-VSP Data

插值(计算机图形学) 降噪 地质学 任务(项目管理) 计算机科学 分离(统计) 源分离 深度学习 人工智能 地震学 算法 模式识别(心理学) 机器学习 工程类 图像(数学) 系统工程
作者
Ming Cheng,Jun Lin,Xintong Dong,Tie Zhong
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-46
标识
DOI:10.1190/geo2024-0531.1
摘要

Distributed acoustic sensing (DAS) is an innovative data acquisition method and is usually combined with vertical seismic profiling (VSP) technique for downhole seismic exploration, offering some advantages such as low cost, high resistance to temperature and pressure, and a high spatial sampling rate. A pre-processing workflow can significantly improve the quality of pre-stack seismic data for subsequent inversion and high-resolution imaging. Denoising, interpolation, and wavefield separation are three necessary pre-processing steps for the pre-stack DAS-VSP records. Traditionally, these three steps are carried out independently, resulting in certain shortcomings, such as the amplitude attenuation of recovered signals, higher computational cost, and extensive parameter adjustments. In this work, we propose a multi-task pre-processing model (MTPM) to combine the three steps together. It can simultaneously perform denoising, interpolation, and wavefield separation operations on DAS-VSP data using only a single well-trained model. The network architecture of MTPM is a combination of two classical frameworks: a convolutional neural network (CNN) and a Transformer. Specifically, this proposed MTPM comprises a Front-Net and a Post-Net. The Front-Net is a Transformer-based encoder-decoder structure enhanced by a U-Net++ block. This hybrid CNN-Transformer structure can simultaneously extract both local and global features using the convolution and multi-head self-attention operations, which are important for denoising and interpolation tasks. The Post-Net is a pure Transformer that focuses only on global features and thus enhances the performance of wavefield separation. Furthermore, we design a two-stage training strategy for MTPM to combine the three tasks together. In our experiments, we use synthetic and field DAS-VSP records to test the effectiveness of MTPM, which demonstrates better denoising, interpolation, and wavefield separation performance compared to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vadfdfb完成签到,获得积分10
刚刚
Owen应助長乐采纳,获得10
刚刚
han发布了新的文献求助10
1秒前
顺顺发布了新的文献求助150
2秒前
大模型应助标致的醉冬采纳,获得30
2秒前
3秒前
4秒前
廖小同发布了新的文献求助10
4秒前
yydsyk完成签到,获得积分10
5秒前
无奈的惜蕊完成签到,获得积分10
5秒前
5秒前
7秒前
du完成签到 ,获得积分0
7秒前
han完成签到,获得积分10
7秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
自然听兰发布了新的文献求助10
11秒前
Jemry发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
orixero应助cwwqt采纳,获得10
14秒前
奇大可完成签到 ,获得积分10
14秒前
科目三应助震动的戒指采纳,获得10
14秒前
廖小同完成签到,获得积分10
14秒前
15秒前
小二郎应助Jemry采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
科研通AI6应助结实的以莲采纳,获得10
17秒前
快乐非笑发布了新的文献求助10
18秒前
浮游应助刘茂帅采纳,获得10
18秒前
18秒前
18秒前
江边鸟发布了新的文献求助20
19秒前
jyy应助hzauhzau采纳,获得10
19秒前
qingmao完成签到,获得积分10
19秒前
独特乘云发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276