Biomimetic mineralization of collagen: mechanisms, applications, and prospects

作者
Zezhen Pan,Youbin Wang,Chang Cui,Zihan Sun,Jackie Y. Ying,Jianxiao Wu,Wen Su
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:330 (Pt 4): 148294-148294 被引量:1
标识
DOI:10.1016/j.ijbiomac.2025.148294
摘要

Mineralization is a prevalent phenomenon among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of hard tissues. Biomimetic mineralization is a process of synthesizing inorganic minerals with the guidance of organic molecules or biomolecules under the relatively mild conditions. Intrafibrillar mineralization of collagen is essential not only as a fundamental process in forming biological hard tissues but also as a bottom-up strategy for the construction of advanced biomineralization-inspired biomaterials. This review firstly provide a brief overview of physiological and pathological mineralization, followed by systematically summarizes research progress in the representative mechanisms and hypotheses for intrafibrillar mineralization of collagen, including the classical nucleation theory, the polymer induced liquid precursor theory, the size exclusion theory, the electrostatic attraction theory, the Gibbs-Donnan equilibrium theory and the polyelectrolyte‑calcium complexes pre-precursor pathway. Then, the regulation of hierarchical macro-nano structure and its applications in tissue engineering of biomimetic mineralized collagen are outlined. Furthermore, with the advancement of protein recombination technology and the in-depth understanding of mineralization mechanism, the development of biomimetic mineralized collagen in the field of oral hard tissues is anticipated. These research progress can further inspire researchers to design structurally sophisticated and multifunctionalized biomimetic materials to meet the complex clinical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangye完成签到,获得积分10
刚刚
SCI完成签到,获得积分10
刚刚
1秒前
粗暴的平凡完成签到,获得积分10
2秒前
2秒前
子铭完成签到,获得积分20
3秒前
浮游应助尚白swqd采纳,获得10
3秒前
上好佳完成签到,获得积分10
5秒前
小鱼儿发布了新的文献求助10
5秒前
英吉利25发布了新的文献求助30
5秒前
5秒前
科研通AI2S应助皮蛋_WH采纳,获得50
8秒前
8秒前
蜻蜓爱上梨完成签到,获得积分10
9秒前
鲤鱼导师完成签到,获得积分10
11秒前
科研小新在努力完成签到,获得积分10
12秒前
Endeavor完成签到,获得积分10
12秒前
似雨若离完成签到,获得积分10
12秒前
曲奇吐司完成签到,获得积分10
12秒前
Raine完成签到,获得积分10
12秒前
yi发布了新的文献求助10
13秒前
13秒前
Sau1完成签到,获得积分10
13秒前
13秒前
14秒前
早早完成签到,获得积分10
15秒前
Anna完成签到 ,获得积分10
16秒前
Astronaut完成签到,获得积分10
17秒前
科研狗完成签到,获得积分10
18秒前
端庄向雁完成签到,获得积分10
19秒前
19秒前
lalala发布了新的文献求助10
20秒前
沃若完成签到 ,获得积分10
21秒前
22秒前
活力立诚完成签到,获得积分10
22秒前
乔滴滴完成签到 ,获得积分10
22秒前
温暖锦程完成签到,获得积分10
22秒前
shubo发布了新的文献求助10
23秒前
24秒前
cfy完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294519
求助须知:如何正确求助?哪些是违规求助? 4444365
关于积分的说明 13832957
捐赠科研通 4328428
什么是DOI,文献DOI怎么找? 2376121
邀请新用户注册赠送积分活动 1371451
关于科研通互助平台的介绍 1336662