A Scalable High Throughput Fully Automated Pipeline for the Quantification of Amyloid Pathology in Alzheimer’s Disease using Deep Learning Algorithms

神经病理学 病理 管道(软件) 计算机科学 数字化病理学 人工智能 深度学习 卷积神经网络 疾病 医学 程序设计语言
作者
V. Ramaswamy,Monika Ahirwar,Gennadi Ryan,Maxim Signaevsky,Vahram Haroutunian,Steven Finkbeiner
标识
DOI:10.1101/2023.05.19.541376
摘要

Abstract The most common approach to characterize neuropathology in Alzheimer’s disease (AD) involves a manual survey and inspection by an expert neuropathologist of postmortem tissue that has been immunolabeled to visualize the presence of amyloid β in plaques and around blood vessels and neurofibrillary tangles of the tau protein. In the case of amyloid β pathology, a semiquantitative score is given that is based on areas of densest pathology. The approach has been well-validated but the process is laborious and time consuming, and inherently susceptible to intra- and inter-observer variability. Moreover, the tremendous growth in genetic, transcriptomic and proteomic data from AD patients has created new opportunities to link clinical features of AD to molecular pathogenesis through pathology, but the lack of high throughput quantitative and comprehensive approaches to assess neuropathology limits the associations that can be discovered. To address these limitations, we designed a computational pipeline to analyze postmortem tissue from AD patients in a fully automated, unbiased and high throughput manner. We used deep learning to train algorithms with a Mask Regional-Convolutional Neural Network to detect and classify different types of amyloid pathology with human level accuracy. After training on pathology slides from a Mt Sinai cohort, our algorithms identified amyloid pathology in samples made at an independent brain bank and from an unrelated cohort of patients, indicating that the algorithms were detecting reproducible and generalizable pathology features. We designed the pipeline to retain the position of the pathology it detects, making it possible to reconstruct a map of pathology across the entire whole slide image, facilitating neuropathological analyses at multiple scales. Quantitative measurements of amyloid pathology correlated positively and significantly with the severity of AD as measured by standard approaches. We conclude that we have developed a computational pipeline to analyze digitized images of neuropathology in high throughput and algorithms to detect types of amyloid pathology with human level accuracy that should enable neuropathological analysis of large tissue collections and integration of those results with orthogonal clinical and multiomic measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达的沛儿完成签到,获得积分10
刚刚
刚刚
无辜的井完成签到,获得积分10
1秒前
1秒前
huayi发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
酷酷云朵发布了新的文献求助10
2秒前
haocheng发布了新的文献求助10
3秒前
3秒前
hakei发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
无心的语风完成签到,获得积分10
5秒前
5秒前
6秒前
Docsiwen完成签到 ,获得积分10
6秒前
慕青应助米大王采纳,获得10
6秒前
Crystal发布了新的文献求助20
6秒前
有熊发布了新的文献求助10
6秒前
chen完成签到,获得积分10
7秒前
7秒前
随机昵称发布了新的文献求助10
7秒前
QQ完成签到,获得积分10
7秒前
百川完成签到,获得积分10
7秒前
shaylie发布了新的文献求助50
8秒前
白桃发布了新的文献求助10
8秒前
8秒前
wwwwww发布了新的文献求助10
8秒前
9秒前
传奇3应助tough采纳,获得30
10秒前
10秒前
10秒前
11秒前
11秒前
富贵儿发布了新的文献求助10
11秒前
lanxinyue发布了新的文献求助10
12秒前
华仔应助芽芽采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769492
求助须知:如何正确求助?哪些是违规求助? 5579841
关于积分的说明 15421714
捐赠科研通 4903172
什么是DOI,文献DOI怎么找? 2638121
邀请新用户注册赠送积分活动 1586008
关于科研通互助平台的介绍 1541098