YOLO-HMC: An Improved Method for PCB Surface Defect Detection

印刷电路板 可靠性(半导体) 过程(计算) 特征(语言学) 计算机科学 特征提取 人工智能 块(置换群论) 模式识别(心理学) 计算机视觉 数学 操作系统 物理 哲学 量子力学 语言学 功率(物理) 几何学
作者
Minghao Yuan,Yongbing Zhou,Xiaoyu Ren,Hui Zhi,Jian Zhang,Haojie Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:120
标识
DOI:10.1109/tim.2024.3351241
摘要

The surface defects of printed circuit boards (PCBs) generated during the manufacturing process have an adverse effect on product quality, which further directly affects the stability and reliability of equipment performance. However, there are still great challenges in accurately recognizing tiny defects on the surface of PCB under the complex background due to its compact layout. To address the problem, a novel YOLO-HorNet-MCBAM-CARAFE (YOLO-HMC) network based on improved YOLOv5 framework is proposed in this article to identify the tiny-size PCB defect more accurately and efficiently with fewer model parameters. First, the backbone part adopts the HorNet for enhancing the feature extraction ability and deepening the information interaction. Second, an improved multiple convolutional block attention module (MCBAM) is designed to improve the ability of the model to highlight the defect location from a highly similar PCB substrate background. Third, the content-aware reassembly of features (CARAFE) is used to replace the up-sampling layer for fully aggregating the contextual semantic information of PCB images in a large receptive field. Moreover, aiming at the difference between PCB defect detection and natural detection, the original model detection head (DH) is optimized to ensure that YOLOv5 can accurately detect PCB tiny defects. Extensive experiments on PCB defect public datasets have demonstrated a significant advantage compared with several state-of-the-art models, whose mean average precision (mAP) can reach 98.6%, verifying the accuracy and applicability of the proposed YOLO-HMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油发布了新的文献求助10
刚刚
刚刚
丢丢银完成签到,获得积分10
刚刚
风清扬发布了新的文献求助10
1秒前
1秒前
yan完成签到 ,获得积分10
1秒前
研友_8Y26PL完成签到,获得积分10
2秒前
Tbangl完成签到,获得积分10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得20
3秒前
雪米发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
song完成签到,获得积分20
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得20
4秒前
4秒前
qql完成签到,获得积分10
4秒前
今后应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
ljc完成签到 ,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348