亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PotentialMind: Graph Convolutional Machine Learning Potential for Sb–Te Binary Compounds of Multiple Stoichiometries

分子动力学 二进制数 计算机科学 化学计量学 无定形固体 图形 材料科学 人工智能 算法 化学 数学 理论计算机科学 计算化学 物理化学 结晶学 算术
作者
Guanjie Wang,Yuqi Sun,Jian Zhou,Zhimei Sun
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (51): 24724-24733 被引量:10
标识
DOI:10.1021/acs.jpcc.3c07110
摘要

Machine learning potential (MLP) has emerged as a powerful tool in materials research and design. However, most MLP methods rely only on a single descriptor generated by mathematical functions instead of mapping the three-dimensional space of the materials structure, and thus this type of potential is typically limited to specific compositions. In this research, we present graph convolutional machine learning potential (GCMLP) software, termed PotentialMind, which can transform three-dimensional atomic structures into vectors comprising nodes, edges, and weights based on multiple descriptors. Using Sb–Te phase change materials as examples, a model named GCMLP-ST suitable for 12 stoichiometries of Sb–Te compounds has been constructed, whose root-mean-square errors for energy and forces are, respectively, 4.51 and 73.13 meV/Å for training data sets and are, respectively, 4.97 and 76.25 meV/Å for unfamiliar testing data sets. Moreover, for the energy-volume curves and radius distribution function by molecular dynamics, the GCMLP-ST model with 10,000 atoms exhibits good agreement with the ab initio molecular dynamics (AIMD) results across crystalline, liquid, and amorphous phases for the six representative Sb–Te material systems, which also exhibit 50 times the computational efficiency of AIMD. With this framework, the architecture of the machine learning model can be customized by deep and transfer learning, extending to other material systems. In addition, benefiting from the high efficiency of PotentialMind molecular dynamics (PMMD), it can be used for real devices, spanning tens of nanoseconds and comprising millions of atoms under different programming conditions that are impossible with AIMD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
48秒前
49秒前
51秒前
科目三应助斯尼奇采纳,获得10
51秒前
Kevin发布了新的文献求助10
55秒前
2分钟前
2分钟前
2分钟前
斯尼奇完成签到,获得积分10
2分钟前
斯尼奇发布了新的文献求助10
2分钟前
2分钟前
泽哥发布了新的文献求助10
3分钟前
3分钟前
泽哥完成签到,获得积分10
3分钟前
Tiger完成签到,获得积分10
3分钟前
子阅发布了新的文献求助20
4分钟前
Marciu33应助hairgod采纳,获得10
4分钟前
andrele应助科研通管家采纳,获得20
4分钟前
乐观囧完成签到,获得积分20
6分钟前
脑洞疼应助乐观囧采纳,获得10
6分钟前
小路完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
天天快乐应助科研通管家采纳,获得10
6分钟前
andrele应助科研通管家采纳,获得10
8分钟前
香蕉觅云应助科研通管家采纳,获得10
8分钟前
andrele应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
科研通AI5应助James采纳,获得10
9分钟前
啦啊啦啦啦应助柏风华采纳,获得20
9分钟前
CodeCraft应助科研通管家采纳,获得10
10分钟前
bc应助科研通管家采纳,获得20
10分钟前
柏风华完成签到,获得积分10
10分钟前
11分钟前
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340610
关于积分的说明 10300759
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529