An explainable unsupervised risk early warning framework based on the empirical cumulative distribution function: Application to dairy safety

可解释性 可追溯性 计算机科学 食品安全 风险评估 风险管理 风险分析(工程) 经验分布函数 稳健性(进化) 数据挖掘 统计 机器学习 数学 业务 软件工程 财务 化学 病理 计算机安全 基因 医学 生物化学
作者
Junyi Yan,Lei Sun,Enguang Zuo,Jie Zhong,Tianle Li,Chen Chen,Cheng Chen,Xiaoyi Lv
出处
期刊:Food Research International [Elsevier BV]
卷期号:178: 113933-113933
标识
DOI:10.1016/j.foodres.2024.113933
摘要

Efficient food safety risk assessment significantly affects food safety supervision. However, food detection data of different types and batches show different feature distributions, resulting in unstable detection results of most risk assessment models, lack of interpretability of risk classification, and insufficient risk traceability. This study aims to explore an efficient food safety risk assessment model that takes into account robustness, interpretability and traceability. Therefore, the Explainable unsupervised risk Warning Framework based on the Empirical cumulative Distribution function (EWFED) was proposed. Firstly, the detection data's underlying distribution is estimated as non-parametric by calculating each testing indicator's empirical cumulative distribution. Next, the tail probabilities of each testing indicator are estimated based on these distributions and summarized to obtain the sample risk value. Finally, the "3σ Rule" is used to achieve explainable risk classification of qualified samples, and the reasons for unqualified samples are tracked according to the risk score of each testing indicator. The experiments of the EWFED model on two types of dairy product detection data in actual application scenarios have verified its effectiveness, achieving interpretable risk division and risk tracing of unqualified samples. Therefore, this study provides a more robust and systematic food safety risk assessment method to promote precise management and control of food safety risks effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北筝发布了新的文献求助10
刚刚
刚刚
cl完成签到,获得积分10
刚刚
光亮向雁发布了新的文献求助10
2秒前
BL发布了新的文献求助10
2秒前
AhhHuang应助兰蕙采纳,获得10
2秒前
3秒前
3秒前
迷了路的猫完成签到,获得积分10
3秒前
3秒前
4秒前
酷炫灵安发布了新的文献求助10
4秒前
AamirAli发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
wenbin完成签到,获得积分10
5秒前
Lucas应助洁净的黑米采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
自信雨安完成签到 ,获得积分10
7秒前
LOWRY完成签到,获得积分20
7秒前
move发布了新的文献求助10
8秒前
8秒前
等待日记本完成签到 ,获得积分10
8秒前
9秒前
奋斗青发布了新的文献求助10
9秒前
9秒前
Duxize发布了新的文献求助10
9秒前
FU关注了科研通微信公众号
10秒前
852应助鱼干铺采纳,获得10
10秒前
科研宋宋发布了新的文献求助10
10秒前
杨一完成签到 ,获得积分10
10秒前
10秒前
Joseph完成签到,获得积分10
11秒前
Lasse应助shen采纳,获得10
11秒前
开心芷文完成签到 ,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817577
求助须知:如何正确求助?哪些是违规求助? 3360882
关于积分的说明 10410010
捐赠科研通 3078935
什么是DOI,文献DOI怎么找? 1690894
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065