Two step pyrolysis synthesis method of graphite-enhanced Nano-Si/Pitch composite as long cycle life anode for lithium-ion batteries.

法拉第效率 材料科学 阳极 锂(药物) 储能 纳米复合材料 化学工程 纳米颗粒 纳米技术 电极 光电子学 化学 功率(物理) 医学 物理 工程类 物理化学 量子力学 内分泌学
作者
Kelvin Jenerali Nyamtara,Jong Kwon Song,Neema Cyril Karima,Sung Hoon Kim,Manh Cuong Nguyen,Thi Phuong Mai Duong,Kyung Jin Lee,Wook Ahn
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:976: 173229-173229
标识
DOI:10.1016/j.jallcom.2023.173229
摘要

Energy storage devices have become the dominant power source in various fields due to their capacity, lifespan, and eco-friendliness. However, there is a need to develop new energy storage devices with higher energy and power density to meet increasing energy demands. Silicon-based anode materials have considerable potential for developing long-lasting, high-capacity energy storage devices, specifically lithium-ion batteries. However, the practical use of these batteries faces challenges like significant volume variations, silicon instability during charging and discharging, and restricted conductivity. This work used silicon nanoparticles from waste industrial solar cells and mixed them with pitch derived from coal tar in a tetrahydrofuran (THF) solvent to form a homogenous Si@Pitch nanocomposite. Pitch-derived carbon helps hold the silicon particles together, reducing the detrimental effects of volume expansion. It acts as a matrix that accommodates the structural changes in silicon during lithiation and delithiation. The Pyrolyzed Si@Pitch-2:1 nanocomposite electrode developed through an efficient two-step pyrolysis technique demonstrated outstanding performance. When charged at a rate of 500 mA·g-1 over 200 cycles, it showed a high discharge capacity of 1524 mAh·g-1, with an average coulombic efficiency of 99.8% and a discharge capacity retention of 75.7%. Combining silicon nanoparticles and pitch derived from recycled industrial waste contributes to the impressive results. This efficient synthesis method can improve the anode materials used in lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黙宇循光发布了新的文献求助10
刚刚
黙宇循光发布了新的文献求助10
刚刚
benben应助Ali采纳,获得10
1秒前
向前完成签到,获得积分10
5秒前
5秒前
英俊的铭应助研友_O8W9Mn采纳,获得10
6秒前
英姑应助负责的珩采纳,获得10
6秒前
7秒前
藏獒完成签到,获得积分10
8秒前
羲和之梦完成签到,获得积分10
8秒前
9秒前
LL发布了新的文献求助10
12秒前
LIZT发布了新的文献求助10
14秒前
慕青应助酷炫的毛巾采纳,获得10
15秒前
15秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
yanling完成签到,获得积分10
19秒前
szc-2000发布了新的文献求助10
21秒前
jia完成签到,获得积分20
22秒前
22秒前
25秒前
Joaquin完成签到,获得积分10
26秒前
28秒前
活泼文涛关注了科研通微信公众号
28秒前
jjjjjj发布了新的文献求助10
28秒前
CipherSage应助Lianggo采纳,获得10
29秒前
开心的凡梦完成签到,获得积分20
31秒前
hjx发布了新的文献求助10
33秒前
太阳发布了新的文献求助10
34秒前
彭于晏应助黙宇循光采纳,获得10
36秒前
今后应助黙宇循光采纳,获得10
36秒前
NexusExplorer应助黙宇循光采纳,获得10
36秒前
优美怜晴关注了科研通微信公众号
37秒前
丰富翠彤发布了新的文献求助10
39秒前
39秒前
39秒前
40秒前
jjjjjj完成签到,获得积分10
40秒前
wangjingli666应助太阳采纳,获得10
42秒前
43秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2404851
求助须知:如何正确求助?哪些是违规求助? 2103308
关于积分的说明 5308164
捐赠科研通 1830745
什么是DOI,文献DOI怎么找? 912219
版权声明 560529
科研通“疑难数据库(出版商)”最低求助积分说明 487712