已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comprehensive visual information acquisition for tomato picking robot based on multitask convolutional neural network

分割 人工智能 卷积神经网络 计算机科学 特征(语言学) 计算机视觉 模式识别(心理学) 目标检测 特征提取 哲学 语言学
作者
Xiaoqiang Du,Zhichao Meng,Zenghong Ma,Lijun Zhao,Wenwu Lu,Hongchao Cheng,Y. Wang
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:238: 51-61 被引量:5
标识
DOI:10.1016/j.biosystemseng.2023.12.017
摘要

The tomato picking robot's vision system faces two difficult tasks: precise tomato pose acquisition and stem location. Tomato pose and stem location can help determine the end effector pose and achieve collision-free picking. To realise efficient crop picking, the tasks of target location, pose detection, and obstacle semantic segmentation should be completed in one model to obtain comprehensive visual information. Therefore, the multitask convolutional neural network YOLO-MCNN is proposed, a new method to complete the above tasks in one model. By fusing multi-scale features and determining the optimal locations for the semantic segmentation branch, four strategies are proposed for enhancing the segmentation ability. The experiment results show that fusing the semantic segmentation branch with the second layer of shallow feature maps and placing the branch after the 17th layer can result in the best segmentation performance. Fusing shallow feature maps improves small target detection while merging multi-scale feature maps enhances semantic segmentation performance. Moreover, ablation experiments are conducted to understand the influence between multitask convolutional and single task networks. It proves that running multiple tasks on the same backbone network does not affect their performance. The YOLO-MCNN's target detection performance F1 is 87.8%, the semantic segmentation performance mIoU is 74.8%, the keypoint detection performance dlmk is 6.95 pixels, the network size is 15.2 MB, and the inference speed is 19.9ms. Compared with other target detection and semantic segmentation networks, it shows that the comprehensive performance of the YOLO-MCNN is the best. The method provides theoretical foundation for constructing multitask convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Q人士采纳,获得10
1秒前
lena完成签到,获得积分10
1秒前
HandsomeShaw完成签到,获得积分10
2秒前
23lk发布了新的文献求助10
2秒前
一木张完成签到,获得积分10
5秒前
YOUNG关注了科研通微信公众号
9秒前
xiaoguo完成签到,获得积分10
12秒前
14秒前
科研通AI5应助默默的鬼神采纳,获得10
18秒前
依克完成签到,获得积分10
19秒前
Q人士发布了新的文献求助10
19秒前
20秒前
22秒前
25秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
zho应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
漂亮寻云发布了新的文献求助10
28秒前
立军发布了新的文献求助10
28秒前
28秒前
gzy完成签到 ,获得积分10
29秒前
31秒前
周宾克完成签到 ,获得积分10
32秒前
成就莞发布了新的文献求助10
33秒前
ary完成签到 ,获得积分20
35秒前
大气的无颜应助豆芽采纳,获得10
36秒前
酷波er应助默默的鬼神采纳,获得10
38秒前
旺仔爱吃小馒头完成签到,获得积分10
43秒前
科研通AI2S应助ary采纳,获得10
45秒前
illusion2019应助ary采纳,获得10
45秒前
45秒前
大鱼儿发布了新的文献求助10
48秒前
48秒前
豆芽完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780712
求助须知:如何正确求助?哪些是违规求助? 3326219
关于积分的说明 10226204
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758723