Warfarin–A natural anticoagulant: A review of research trends for precision medication

华法林 计算机科学 医学 机器学习 药效学 加药 人工智能 药理学 心房颤动 数据挖掘 药代动力学 内科学
作者
Ling Xue,Rajeev K. Singla,Shan He,Sonia Arrasate,Humberto González‐Díaz,Liyan Miao,Bairong Shen
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:128: 155479-155479 被引量:7
标识
DOI:10.1016/j.phymed.2024.155479
摘要

Warfarin is a widely prescribed anticoagulant in the clinic. It has a more considerable individual variability, and many factors affect its variability. Mathematical models can quantify the quantitative impact of these factors on individual variability.The aim is to comprehensively analyze the advanced warfarin dosing algorithm based on pharmacometrics and machine learning models of personalized warfarin dosage.A bibliometric analysis of the literature retrieved from PubMed and Scopus was performed using VOSviewer. The relevant literature that reported the precise dosage of warfarin calculation was retrieved from the database. The multiple linear regression (MLR) algorithm was excluded because a recent systematic review that mainly reviewed this algorithm has been reported. The following terms of quantitative systems pharmacology, mechanistic model, physiologically based pharmacokinetic model, artificial intelligence, machine learning, pharmacokinetic, pharmacodynamic, pharmacokinetics, pharmacodynamics, and warfarin were added as MeSH Terms or appearing in Title/Abstract into query box of PubMed, then humans and English as filter were added to retrieve the literature.Bibliometric analysis revealed important co-occuring MeShH and index keywords. Further, the United States, China, and the United Kingdom were among the top countries contributing in this domain. Some studies have established personalized warfarin dosage models using pharmacometrics and machine learning-based algorithms. There were 54 related studies, including 14 pharmacometric models, 31 artificial intelligence models, and 9 model evaluations. Each model has its advantages and disadvantages. The pharmacometric model contains biological or pharmacological mechanisms in structure. The process of pharmacometric model development is very time- and labor-intensive. Machine learning is a purely data-driven approach; its parameters are more mathematical and have less biological interpretation. However, it is faster, more efficient, and less time-consuming. Most published models of machine learning algorithms were established based on cross-sectional data sourced from the database.Future research on personalized warfarin medication should focus on combining the advantages of machine learning and pharmacometrics algorithms to establish a more robust warfarin dosage algorithm. Randomized controlled trials should be performed to evaluate the established algorithm of warfarin dosage. Moreover, a more user-friendly and accessible warfarin precision medicine platform should be developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyt完成签到,获得积分10
2秒前
畅快的胡萝卜完成签到,获得积分10
3秒前
JamesPei应助霍三石采纳,获得10
3秒前
Nianqing发布了新的文献求助10
4秒前
科研通AI5应助夏东方采纳,获得10
5秒前
sxw2088完成签到,获得积分10
5秒前
汉堡包应助kkkkkkk采纳,获得10
7秒前
简柠完成签到,获得积分10
9秒前
11秒前
小蘑菇应助galioo3000采纳,获得10
13秒前
沉静的万天完成签到 ,获得积分10
14秒前
15秒前
中岛悠斗完成签到,获得积分10
16秒前
小羊完成签到 ,获得积分10
17秒前
18秒前
彭于晏应助简易采纳,获得10
20秒前
乐开欣完成签到,获得积分10
22秒前
霍三石发布了新的文献求助10
22秒前
Nancy完成签到,获得积分10
22秒前
23秒前
俊逸的篮球完成签到,获得积分10
24秒前
weirdog完成签到,获得积分10
24秒前
科研通AI5应助NARUTO采纳,获得10
24秒前
24秒前
还单身的香菇完成签到,获得积分10
24秒前
懦弱的迎天完成签到,获得积分10
26秒前
恣意完成签到 ,获得积分10
26秒前
闪亮的季节完成签到,获得积分10
28秒前
28秒前
xu完成签到 ,获得积分10
29秒前
29秒前
成就的白竹完成签到,获得积分10
29秒前
aaa发布了新的文献求助10
30秒前
莹亮的星空完成签到,获得积分0
31秒前
hecarli完成签到,获得积分0
31秒前
orixero应助三月雪卿采纳,获得10
31秒前
31秒前
zzz发布了新的文献求助30
32秒前
33秒前
wanglu完成签到,获得积分10
34秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845729
求助须知:如何正确求助?哪些是违规求助? 3388008
关于积分的说明 10551514
捐赠科研通 3108690
什么是DOI,文献DOI怎么找? 1712988
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891