MetaCluster: a Universal Interpretable Classification Framework for Cybersecurity

计算机科学 计算机安全 人工智能 数据挖掘
作者
Wenhan Ge,Zeyuan Cui,Junfeng Wang,Binhui Tang,Xiaohui Li
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 3829-3843 被引量:1
标识
DOI:10.1109/tifs.2024.3372808
摘要

Rising cyber threats have created an immediate demand for Deep Learning (DL) in cybersecurity. Nevertheless, the opaque nature of DL models poses challenges in deploying, collaborating, and assessing their effectiveness in less reliable cybersecurity environments. Despite eXplainable Artificial Intelligence (XAI) playing a role in enhancing cybersecurity analytics, the limited task scope, the propensity for data overfitting, and the stochastic explanations hinder its broader application. To fill the gap, this paper introduces a generic interpretable classification framework, named MetaCluster. MetaCluster generates semantic prototypes for features, patterns, and domains at varying granular levels by following three fundamental steps: embedding representations, acquiring prototypes, and aggregating semantics. These mechanisms guarantee that MetaCluster achieves critical information extraction and reliable classification at minimal cost. The experiments encompass cybersecurity classification tasks and assess the interpretability of the framework. These tasks encompass malware family classification, threat behavior analysis, and malicious traffic identification. In particular, when compared to other DL models, MetaCluster exhibits a significant reduction in parameter consumption by 79.52% to 91.78%, and boosts operational speed up to 71.37%, while its F1 scores remain stable or slightly increase. Additionally, MetaCluster possesses the ability to assess and visually represent the significance of image, text, and statistical features. This capability leads to a reduction of Mean Squared Error (MSE) between expected and actual predictions by 0.0101 to 0.1020.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐书蝶完成签到 ,获得积分10
7秒前
8秒前
傻傻的从波完成签到,获得积分10
9秒前
bono完成签到 ,获得积分10
9秒前
番茄小超人2号完成签到 ,获得积分10
15秒前
Eins完成签到 ,获得积分10
20秒前
hu完成签到 ,获得积分10
20秒前
Serein完成签到,获得积分10
32秒前
whitepiece完成签到,获得积分10
32秒前
皮皮完成签到 ,获得积分10
36秒前
钟声完成签到,获得积分0
37秒前
37秒前
王佳豪完成签到,获得积分10
43秒前
笨笨梦松完成签到,获得积分10
44秒前
zyp应助任性云朵采纳,获得10
44秒前
1分钟前
菜芽君完成签到,获得积分10
1分钟前
1分钟前
二丙完成签到 ,获得积分10
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
1分钟前
shanshan发布了新的文献求助10
1分钟前
研友_xnE65Z完成签到 ,获得积分10
1分钟前
bzdjsmw完成签到 ,获得积分10
1分钟前
无情的君浩应助shanshan采纳,获得30
1分钟前
蓝意完成签到,获得积分0
1分钟前
shanshan完成签到,获得积分10
1分钟前
2分钟前
崩溃完成签到,获得积分10
2分钟前
阿秋完成签到,获得积分10
2分钟前
2分钟前
gmc完成签到 ,获得积分10
2分钟前
鲸落完成签到 ,获得积分10
2分钟前
小强完成签到 ,获得积分10
2分钟前
erfan发布了新的文献求助10
2分钟前
chenbin完成签到,获得积分10
2分钟前
2分钟前
1002SHIB完成签到,获得积分10
3分钟前
nihaolaojiu完成签到,获得积分10
3分钟前
sheetung完成签到,获得积分10
3分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445271
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907