Lightweight Lossy/Lossless ECG Compression for Medical IoT Systems

有损压缩 无损压缩 计算机科学 压缩比 数据压缩 数据压缩比 均方误差 人工智能 算法 图像压缩 统计 数学 图像(数学) 工程类 图像处理 汽车工程 内燃机
作者
Yangyang Chang,Gerald E. Sobelman
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (7): 12450-12458 被引量:8
标识
DOI:10.1109/jiot.2023.3336995
摘要

Monitoring patients with heart disease can be done by analyzing the Electrocardiogram (ECG). However, the large amount of data poses a burden for a system that is implemented as an IoT system with limited memory and computation capabilities. Traditionally, lossless compression methods have been favored to reduce the memory requirements due to the critical nature of the application. However, if the reconstruction of a lossy signal does not significantly affect diagnosis capability, then those methods may become attractive due to their larger compression ratios. In this paper, we propose a hybrid lossy/lossless compression system with good signal fidelity and compression ratio characteristics. The performance is evaluated after decompression using Deep Neural Networks (DNNs) that have been shown to have good classification capabilities. For the Clinical Outcomes in Digital Electrocardiology (CODE) dataset, the proposed hybrid compressor can achieve an average compression ratio of 5.18 with a mean squared error of 0.20, and DNN-based diagnosis of the decompressed waveforms has, on average, only 0.8 additional erroneous diagnoses out of a total of 402 cases compared to using the original ECG data. For the PTB-XL dataset, the hybrid compressor can achieve a high average compression ratio of 4.91 with a mean squared error of 0.01. In addition, the decompressed ECGs have only a 2.46% lower macro averaged Area Under the receiver operating characteristic Curve (AUC) score than when using the original ECGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dll发布了新的文献求助10
刚刚
11发布了新的文献求助10
1秒前
积极彩虹完成签到,获得积分10
2秒前
koi发布了新的文献求助10
2秒前
3秒前
b3lyp发布了新的文献求助10
3秒前
ll完成签到,获得积分10
4秒前
junxyuan发布了新的文献求助10
5秒前
科研通AI6应助彩色的天寿采纳,获得10
7秒前
7秒前
我是老大应助breeze采纳,获得20
8秒前
8秒前
登山人发布了新的文献求助10
9秒前
虚心的阿松完成签到,获得积分10
9秒前
9秒前
共享精神应助小熊采纳,获得10
10秒前
11秒前
koi完成签到,获得积分10
11秒前
sci完成签到,获得积分10
11秒前
miaolingcool发布了新的文献求助30
12秒前
不知终日梦为鱼完成签到,获得积分10
12秒前
沉静的乌冬面完成签到,获得积分20
13秒前
13秒前
15秒前
15秒前
Espoir发布了新的文献求助10
17秒前
dl完成签到,获得积分10
19秒前
21秒前
yyds发布了新的文献求助10
21秒前
nan应助克里斯就是逊啦采纳,获得10
22秒前
wwwwc发布了新的文献求助10
22秒前
Syne_完成签到,获得积分10
23秒前
舒心易云完成签到,获得积分10
23秒前
Owen应助耳东陈采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
popvich应助科研通管家采纳,获得20
31秒前
大模型应助Leo采纳,获得10
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207687
求助须知:如何正确求助?哪些是违规求助? 4385504
关于积分的说明 13657249
捐赠科研通 4244180
什么是DOI,文献DOI怎么找? 2328661
邀请新用户注册赠送积分活动 1326328
关于科研通互助平台的介绍 1278500