清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A cross-resolution transfer learning approach for soil moisture retrieval from Sentinel-1 using limited training samples

基本事实 遥感 环境科学 含水量 均方误差 合成孔径雷达 水分 图像分辨率 土壤科学 计算机科学 气象学 机器学习 人工智能 地质学 数学 统计 地理 岩土工程
作者
Liujun Zhu,Junjie Dai,Yi Liu,Shanshui Yuan,Tianling Qin,Jeffrey P. Walker
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:301: 113944-113944 被引量:20
标识
DOI:10.1016/j.rse.2023.113944
摘要

Synthetic Aperture Radar (SAR) data is increasingly popular as a data source for global near-surface soil moisture mapping, but large-scale applications are still challenging due to the complex scattering process and the cumbersome data preprocessing. The emergence of deep learning methods has allowed advances in the remote sensing of large-scale surface parameters, but its application in SAR soil moisture retrieval has suffered from the availability of ground soil moisture measurements. Accordingly, this study proposed a cross-resolution transfer learning framework, with the assumption that sophisticated models for different spatial resolutions share a similar model architecture and trainable parameters. A robust high-resolution model can thus be trained with fewer samples by using coarse models. Accordingly, 25 deep learning models were pre-trained taking ∼387,000 Soil Moisture Active Passive (SMAP) Level-3 9 km enhanced passive soil moisture measurements as the truth, with an average validation RMSE of 0.03 m3/m3. They were then transferred to finer grids of 0.1–1 km using a small number of in-situ samples. A total of ∼190,000 daily soil moisture measurements from the international soil moisture network (ISMN) were used to evaluate the proposed framework in three scenarios. The results show that 1) 5000–6000 random samples are sufficient to achieve a target RMSE of 0.06 m3/m3; 2) training samples from a short period (2 or 4 months for Sentinel-1) of 2021 resulted in an overall RMSE of ∼0.068 m3/m3 in an independent period of 2016–2020; 3) the transfer learning also improved the retrieval accuracy (10–30% in relative) over areas without ground samples used for training but failed to yield an acceptable accuracy over mountainous areas. The promising results from this study confirmed the effectiveness of using "pre-trained models + scenario specific models" for regional to global soil moisture retrieval from Sentinel-1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孙燕应助范范采纳,获得10
6秒前
20秒前
23秒前
Mia发布了新的文献求助10
26秒前
赘婿应助科研通管家采纳,获得10
51秒前
1分钟前
Xiaoxiao举报谦让的傲芙求助涉嫌违规
1分钟前
digger2023完成签到 ,获得积分10
2分钟前
实力不允许完成签到 ,获得积分10
2分钟前
Xiaoxiao举报yvonne求助涉嫌违规
2分钟前
2分钟前
Xiaoxiao举报繁荣的洋葱求助涉嫌违规
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
kmzzy完成签到,获得积分10
3分钟前
范范发布了新的文献求助10
3分钟前
3分钟前
共享精神应助范范采纳,获得10
3分钟前
Jodie发布了新的文献求助10
3分钟前
风起云涌龙完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
烟消云散完成签到,获得积分10
4分钟前
4分钟前
苗条的一一完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
小蘑菇应助Keylor采纳,获得10
4分钟前
5分钟前
熊猫小肿发布了新的文献求助10
5分钟前
范范完成签到,获得积分10
5分钟前
范范发布了新的文献求助10
5分钟前
5分钟前
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492571
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771859