Integration of dosimetric parameters, clinical factors, and radiomics to predict symptomatic radiation pneumonitis in lung cancer patients undergoing combined immunotherapy and radiotherapy

医学 放射治疗 接收机工作特性 肺癌 无线电技术 核医学 SABR波动模型 放射治疗计划 放射科 肿瘤科 内科学 随机波动 波动性(金融) 金融经济学 经济
作者
Tingting Nie,Zien Chen,Jun Cai,Shuangquan Ai,Xudong Xue,Mengting Yuan,C. Li,Liting Shi,Yulin Liu,Vivek Verma,Jianping Bi,Guang Han,Zilong Yuan
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:190: 110047-110047 被引量:10
标识
DOI:10.1016/j.radonc.2023.110047
摘要

Abstract

Purpose

This study aimed to combine clinical/dosimetric factors and handcrafted/deep learning radiomic features to establish a predictive model for symptomatic (grade ≥ 2) radiation pneumonitis (RP) in lung cancer patients who received immunotherapy followed by radiotherapy.

Materials and Methods

This study retrospectively collected data of 73 lung cancer patients with prior receipt of ICIs who underwent thoracic radiotherapy (TRT). Of these 73 patients, 41 (56.2 %) developed symptomatic grade ≥ 2 RP. RP was defined per multidisciplinary clinician consensus using CTCAE v5.0. Regions of interest (ROIs) (from radiotherapy planning CT images) utilized herein were gross tumor volume (GTV), planning tumor volume (PTV), and PTV-GTV. Clinical/dosimetric (mean lung dose and V5-V30) parameters were collected, and 107 handcrafted radiomic (HCR) features were extracted from each ROI. Deep learning-based radiomic (DLR) features were also extracted based on pre-trained 3D residual network models. HCR models, Fusion HCR model, Fusion HCR + ResNet models, and Fusion HCR + ResNet + Clinical models were built and compared using the receiver operating characteristic (ROC) curve with measurement of the area under the curve (AUC). Five-fold cross-validation was performed to avoid model overfitting.

Results

HCR models across various ROIs and the Fusion HCR model showed good predictive ability with AUCs from 0.740 to 0.808 and 0.740–0.802 in the training and testing cohorts, respectively. The addition of DLR features improved the effectiveness of HCR models (AUCs from 0.826 to 0.898 and 0.821–0.898 in both respective cohorts). The best performing prediction model (HCR + ResNet + Clinical) combined HCR & DLR features with 7 clinical/dosimetric characteristics and achieved an average AUC of 0.936 and 0.946 in both respective cohorts.

Conclusions

In patients undergoing combined immunotherapy/RT for lung cancer, integrating clinical/dosimetric factors and handcrafted/deep learning radiomic features can offer a high predictive capacity for RP, and merits further prospective validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
wh发布了新的文献求助50
2秒前
贰陆完成签到,获得积分20
2秒前
端庄千琴完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
ShengjuChen完成签到 ,获得积分10
4秒前
乐乐应助标致耷采纳,获得10
5秒前
5秒前
5秒前
5秒前
yanxuhuan完成签到,获得积分10
5秒前
keke发布了新的文献求助10
6秒前
6秒前
小蘑菇应助尊敬的便当采纳,获得10
6秒前
xuxingjie发布了新的文献求助10
6秒前
林圆涛完成签到,获得积分10
6秒前
外向如冬完成签到,获得积分10
6秒前
听说完成签到,获得积分10
7秒前
善学以致用应助fate采纳,获得10
7秒前
星辰大海应助猫的毛采纳,获得30
7秒前
7秒前
爱听歌的南珍完成签到,获得积分20
8秒前
默默完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
xy发布了新的文献求助10
8秒前
我是老大应助ZZZ采纳,获得10
9秒前
科目三应助JamesTYD采纳,获得10
9秒前
开水完成签到 ,获得积分10
9秒前
外向如冬发布了新的文献求助10
10秒前
10秒前
里lilili应助和谐续采纳,获得10
11秒前
墨殇完成签到,获得积分10
11秒前
闪闪的忆灵完成签到,获得积分10
11秒前
胡萝卜icc发布了新的文献求助10
11秒前
11秒前
闪闪落雁发布了新的文献求助10
12秒前
火星上的安柏应助袁钰琳采纳,获得10
13秒前
Red发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Italian Feminism of Sexual Difference: A Different Ecofeminist Thought 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3934886
求助须知:如何正确求助?哪些是违规求助? 3480341
关于积分的说明 11009306
捐赠科研通 3210454
什么是DOI,文献DOI怎么找? 1774164
邀请新用户注册赠送积分活动 860776
科研通“疑难数据库(出版商)”最低求助积分说明 797906