Integration of dosimetric parameters, clinical factors, and radiomics to predict symptomatic radiation pneumonitis in lung cancer patients undergoing combined immunotherapy and radiotherapy

医学 放射治疗 接收机工作特性 肺癌 无线电技术 核医学 SABR波动模型 放射治疗计划 放射科 肿瘤科 内科学 随机波动 波动性(金融) 金融经济学 经济
作者
Tingting Nie,Zien Chen,Jun Cai,Shuangquan Ai,Xudong Xue,Mengting Yuan,C. Li,Liting Shi,Yulin Liu,Vivek Verma,Jianping Bi,Guang Han,Zilong Yuan
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:190: 110047-110047 被引量:6
标识
DOI:10.1016/j.radonc.2023.110047
摘要

Abstract

Purpose

This study aimed to combine clinical/dosimetric factors and handcrafted/deep learning radiomic features to establish a predictive model for symptomatic (grade ≥ 2) radiation pneumonitis (RP) in lung cancer patients who received immunotherapy followed by radiotherapy.

Materials and Methods

This study retrospectively collected data of 73 lung cancer patients with prior receipt of ICIs who underwent thoracic radiotherapy (TRT). Of these 73 patients, 41 (56.2 %) developed symptomatic grade ≥ 2 RP. RP was defined per multidisciplinary clinician consensus using CTCAE v5.0. Regions of interest (ROIs) (from radiotherapy planning CT images) utilized herein were gross tumor volume (GTV), planning tumor volume (PTV), and PTV-GTV. Clinical/dosimetric (mean lung dose and V5-V30) parameters were collected, and 107 handcrafted radiomic (HCR) features were extracted from each ROI. Deep learning-based radiomic (DLR) features were also extracted based on pre-trained 3D residual network models. HCR models, Fusion HCR model, Fusion HCR + ResNet models, and Fusion HCR + ResNet + Clinical models were built and compared using the receiver operating characteristic (ROC) curve with measurement of the area under the curve (AUC). Five-fold cross-validation was performed to avoid model overfitting.

Results

HCR models across various ROIs and the Fusion HCR model showed good predictive ability with AUCs from 0.740 to 0.808 and 0.740–0.802 in the training and testing cohorts, respectively. The addition of DLR features improved the effectiveness of HCR models (AUCs from 0.826 to 0.898 and 0.821–0.898 in both respective cohorts). The best performing prediction model (HCR + ResNet + Clinical) combined HCR & DLR features with 7 clinical/dosimetric characteristics and achieved an average AUC of 0.936 and 0.946 in both respective cohorts.

Conclusions

In patients undergoing combined immunotherapy/RT for lung cancer, integrating clinical/dosimetric factors and handcrafted/deep learning radiomic features can offer a high predictive capacity for RP, and merits further prospective validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波风水门发布了新的文献求助10
1秒前
2秒前
Nn发布了新的文献求助10
3秒前
4秒前
ddd777发布了新的文献求助10
4秒前
布同完成签到,获得积分10
6秒前
上官若男应助可靠巧荷采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
愫浅发布了新的文献求助10
9秒前
ddd777完成签到,获得积分10
9秒前
9秒前
刀客特幽发布了新的文献求助10
11秒前
12秒前
阳光发布了新的文献求助10
12秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
刀客特幽发布了新的文献求助10
13秒前
1018wxy完成签到,获得积分10
14秒前
15秒前
Khr1stINK发布了新的文献求助10
18秒前
123456678完成签到,获得积分10
18秒前
kk发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774