亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NesTD-Net: Deep NESTA-Inspired Unfolding Network With Dual-Path Deblocking Structure for Image Compressive Sensing

去块滤波器 对偶(语法数字) 计算机科学 人工智能 路径(计算) 计算机视觉 压缩传感 模式识别(心理学) 图像(数学) 迭代重建 图像处理 算法 程序设计语言 艺术 文学类
作者
Hongping Gan,Zhen Guo,Feng Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1923-1937
标识
DOI:10.1109/tip.2024.3371351
摘要

Deep compressive sensing (CS) has become a prevalent technique for image acquisition and reconstruction. However, existing deep learning (DL)-based CS methods often encounter challenges such as block artifacts and information loss during iterative reconstruction, particularly at low sampling rates, resulting in a reduction of reconstructed details. To address these issues, we propose NesTD-Net, an unfolding-based architecture inspired by the NESTA algorithm, designed for image CS. NesTD-Net integrates DL modules into NESTA iterations, forming a deep network that continuously iterates to minimize the ℓ 1 -norm CS problem, ensuring high-quality image CS. Utilizing a learned sampling matrix for measurements and an initialization module for initial estimate, NesTD-Net then introduces Iteration Sub-Modules derived from the NESTA algorithm ( i.e ., Y k , Z k , and X k ) during reconstruction stages to iteratively solve the ℓ 1 -norm CS reconstruction. Additionally, NesTD-Net incorporates a Dual-Path Deblocking Structure (DPDS) to facilitate feature information flow and mitigate block artifacts, enhancing image detail reconstruction. Furthermore, DPDS exhibits remarkable versatility and demonstrates seamless integration with other unfolding-based methods, offering the potential to enhance their performance in image reconstruction. Experimental results demonstrate that our proposed NesTD-Net achieves better performance compared to other state-of-the-art methods in terms of image quality metrics such as SSIM and PSNR, as well as visual perception on several public benchmark datasets. Our code is available at NesTD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
Jasper应助科研通管家采纳,获得30
31秒前
zikncy发布了新的文献求助10
36秒前
38秒前
helpmepaper应助zikncy采纳,获得10
52秒前
1分钟前
ys完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
olekravchenko发布了新的文献求助10
2分钟前
3分钟前
3分钟前
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
义气雁完成签到 ,获得积分10
4分钟前
科研搬运工完成签到,获得积分0
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
nenoaowu应助科研通管家采纳,获得30
6分钟前
7分钟前
橙橙完成签到,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
nenoaowu应助科研通管家采纳,获得30
8分钟前
8分钟前
nenoaowu应助科研通管家采纳,获得30
8分钟前
花花521完成签到,获得积分10
9分钟前
9分钟前
英俊小鼠发布了新的文献求助10
9分钟前
番茄黄瓜芝士片完成签到 ,获得积分10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
10分钟前
11分钟前
12分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919948
求助须知:如何正确求助?哪些是违规求助? 3464948
关于积分的说明 10935414
捐赠科研通 3193263
什么是DOI,文献DOI怎么找? 1764548
邀请新用户注册赠送积分活动 854963
科研通“疑难数据库(出版商)”最低求助积分说明 794541