NesTD-Net: Deep NESTA-Inspired Unfolding Network With Dual-Path Deblocking Structure for Image Compressive Sensing

去块滤波器 对偶(语法数字) 计算机科学 人工智能 路径(计算) 计算机视觉 压缩传感 模式识别(心理学) 图像(数学) 迭代重建 图像处理 算法 文学类 艺术 程序设计语言
作者
Hongping Gan,Zhen Guo,Feng Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1923-1937 被引量:11
标识
DOI:10.1109/tip.2024.3371351
摘要

Deep compressive sensing (CS) has become a prevalent technique for image acquisition and reconstruction. However, existing deep learning (DL)-based CS methods often encounter challenges such as block artifacts and information loss during iterative reconstruction, particularly at low sampling rates, resulting in a reduction of reconstructed details. To address these issues, we propose NesTD-Net, an unfolding-based architecture inspired by the NESTA algorithm, designed for image CS. NesTD-Net integrates DL modules into NESTA iterations, forming a deep network that continuously iterates to minimize the l1 -norm CS problem, ensuring high-quality image CS. Utilizing a learned sampling matrix for measurements and an initialization module for initial estimate, NesTD-Net then introduces Iteration Sub-Modules derived from the NESTA algorithm (i.e., Yk , Zk , and Xk ) during reconstruction stages to iteratively solve the l1 -norm CS reconstruction. Additionally, NesTD-Net incorporates a Dual-Path Deblocking Structure (DPDS) to facilitate feature information flow and mitigate block artifacts, enhancing image detail reconstruction. Furthermore, DPDS exhibits remarkable versatility and demonstrates seamless integration with other unfolding-based methods, offering the potential to enhance their performance in image reconstruction. Experimental results demonstrate that our proposed NesTD-Net achieves better performance compared to other state-of-the-art methods in terms of image quality metrics such as SSIM and PSNR, as well as visual perception on several public benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小风完成签到,获得积分10
刚刚
草莓发布了新的文献求助10
2秒前
小风发布了新的文献求助10
3秒前
王莹关注了科研通微信公众号
4秒前
5秒前
5秒前
小二郎应助qq采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助150
6秒前
7秒前
8秒前
叶子发布了新的文献求助10
9秒前
科研狗完成签到 ,获得积分10
10秒前
kingripple完成签到,获得积分10
10秒前
natsu发布了新的文献求助30
12秒前
华仔应助葫芦娃采纳,获得10
12秒前
董吧啦发布了新的文献求助10
13秒前
13秒前
小李完成签到,获得积分10
13秒前
王梦完成签到 ,获得积分10
13秒前
13秒前
四季刻歌发布了新的文献求助10
14秒前
15秒前
隐形曼青应助泰山球迷采纳,获得10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
子车定帮完成签到,获得积分10
17秒前
王白山发布了新的文献求助10
17秒前
17秒前
17秒前
EYU完成签到,获得积分10
17秒前
王莹发布了新的文献求助10
19秒前
20秒前
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132791
求助须知:如何正确求助?哪些是违规求助? 4334167
关于积分的说明 13503066
捐赠科研通 4171135
什么是DOI,文献DOI怎么找? 2286936
邀请新用户注册赠送积分活动 1287821
关于科研通互助平台的介绍 1228687