Progress and Opportunities for Machine Learning in Materials and Processes of Additive Manufacturing

材料科学 纳米技术 制造工程 工程伦理学 工程类
作者
Wei Long Ng,Guo Liang Goh,Guo Dong Goh,Jyi Sheuan Ten,Wai Yee Yeong
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (34) 被引量:52
标识
DOI:10.1002/adma.202310006
摘要

In recent years, there has been widespread adoption of machine learning (ML) technologies to unravel intricate relationships among diverse parameters in various additive manufacturing (AM) techniques. These ML models excel at recognizing complex patterns from extensive, well-curated datasets, thereby unveiling latent knowledge crucial for informed decision-making during the AM process. The collaborative synergy between ML and AM holds the potential to revolutionize the design and production of AM-printed parts. This review delves into the challenges and opportunities emerging at the intersection of these two dynamic fields. It provides a comprehensive analysis of the publication landscape for ML-related research in the field of AM, explores common ML applications in AM research (such as quality control, process optimization, design optimization, microstructure analysis, and material formulation), and concludes by presenting an outlook that underscores the utilization of advanced ML models, the development of emerging sensors, and ML applications in emerging AM-related fields. Notably, ML has garnered increased attention in AM due to its superior performance across various AM-related applications. It is envisioned that the integration of ML into AM processes will significantly enhance 3D printing capabilities across diverse AM-related research areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
燕子发布了新的文献求助10
5秒前
5秒前
无限的含羞草完成签到,获得积分10
7秒前
weiwei发布了新的文献求助10
8秒前
倪瑞恒发布了新的文献求助10
9秒前
稗子发布了新的文献求助10
9秒前
隐形曼青应助寻梦采纳,获得10
11秒前
14秒前
飞飞飞发布了新的文献求助10
15秒前
无辜绿竹完成签到,获得积分20
19秒前
天天快乐应助美满的天薇采纳,获得10
23秒前
去有风的地方完成签到 ,获得积分10
24秒前
28秒前
lss完成签到,获得积分10
29秒前
大个应助明亮无颜采纳,获得30
32秒前
去有风的地方关注了科研通微信公众号
32秒前
燕子完成签到,获得积分10
33秒前
34秒前
35秒前
36秒前
哆啦A梦完成签到,获得积分10
36秒前
晓晓晓发布了新的文献求助10
37秒前
朱大头发布了新的文献求助10
39秒前
41秒前
田様应助cdercder采纳,获得10
41秒前
无情的函发布了新的文献求助10
41秒前
666完成签到,获得积分10
42秒前
大陆完成签到,获得积分10
43秒前
huangshuishui关注了科研通微信公众号
43秒前
45秒前
科研通AI5应助Jonathan采纳,获得30
46秒前
美满的天薇完成签到,获得积分20
47秒前
monster发布了新的文献求助10
48秒前
心灵美千秋完成签到 ,获得积分10
49秒前
xx发布了新的文献求助10
50秒前
51秒前
懒123完成签到,获得积分10
52秒前
Ava应助monster采纳,获得10
53秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979