Predicting the network shift of large urban agglomerations in China using the deep-learning gravity model: A perspective of population migration

城市群 经济地理学 大都市区 地理 人口 区域科学 城市化 城市规划 计算机科学 经济增长 经济 社会学 人口学 工程类 土木工程 考古
作者
Xinyue Gu,Xingyu Tang,Tong Chen,Xintao Liu
出处
期刊:Cities [Elsevier BV]
卷期号:145: 104680-104680 被引量:16
标识
DOI:10.1016/j.cities.2023.104680
摘要

The demands of socioeconomic development frequently lead to large-scale population migration among cities. While complex network and population migration algorithms have been employed to evaluate this phenomenon, predicting the future shift of urban networks has remained challenging. In this study, we expend the conventional two-dimensional perception of urban structure, projecting geographic information of cities into a high-dimensional future dimension to forecast changes in the network structure with deep learning algorithms. Using the population migration data from 362 Chinese cities, we employed multivariate and non-linear layers to construct a deep learning model that exhibits good geographic and temporal generalization across major metropolitan regions in China, enabling us to forecast the urban network for the year 2025. The result shows that the urban network becomes more equitable and less concentrated in a few dominant cities. This shift suggests a more balanced distribution of resources, opportunities, and development across the urban agglomerations. Understanding the urban structure from the lens of future mobile networks offers deeper insight and perception of its future dimensional nature. By embracing this paradigm shift, we can retain knowledge about urban dynamics and pave the way for more effective urban management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
保持好心情完成签到,获得积分10
2秒前
Hello应助ff采纳,获得10
2秒前
2秒前
2秒前
今后应助淳之风采纳,获得10
2秒前
3秒前
席半完成签到,获得积分10
3秒前
橙汁得配曼妥思完成签到 ,获得积分10
3秒前
3秒前
3秒前
宇与鱼完成签到,获得积分10
3秒前
田様应助HY采纳,获得10
4秒前
5秒前
5秒前
幸福的勒发布了新的文献求助10
5秒前
6秒前
星辰大海应助饱满冥茗采纳,获得10
6秒前
高高完成签到,获得积分10
6秒前
呆萌的鼠标完成签到 ,获得积分0
6秒前
6秒前
yusuf发布了新的文献求助10
6秒前
7秒前
过时的秋尽完成签到,获得积分10
8秒前
夏天发布了新的文献求助10
8秒前
8秒前
hjyylab应助parachuteV采纳,获得10
8秒前
鱼柒完成签到 ,获得积分10
8秒前
碳酸氢钠完成签到,获得积分10
8秒前
Yy杨优秀发布了新的文献求助10
9秒前
墨墨完成签到,获得积分10
9秒前
9秒前
10秒前
45度人完成签到 ,获得积分10
10秒前
10秒前
飞云发布了新的文献求助10
10秒前
Jing完成签到,获得积分10
10秒前
田様应助糖糖糖唐采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797