Predicting the network shift of large urban agglomerations in China using the deep-learning gravity model: A perspective of population migration

城市群 经济地理学 大都市区 地理 人口 区域科学 城市化 城市规划 计算机科学 经济增长 经济 社会学 人口学 工程类 土木工程 考古
作者
Xinyue Gu,Xingyu Tang,Tong Chen,Xintao Liu
出处
期刊:Cities [Elsevier BV]
卷期号:145: 104680-104680 被引量:16
标识
DOI:10.1016/j.cities.2023.104680
摘要

The demands of socioeconomic development frequently lead to large-scale population migration among cities. While complex network and population migration algorithms have been employed to evaluate this phenomenon, predicting the future shift of urban networks has remained challenging. In this study, we expend the conventional two-dimensional perception of urban structure, projecting geographic information of cities into a high-dimensional future dimension to forecast changes in the network structure with deep learning algorithms. Using the population migration data from 362 Chinese cities, we employed multivariate and non-linear layers to construct a deep learning model that exhibits good geographic and temporal generalization across major metropolitan regions in China, enabling us to forecast the urban network for the year 2025. The result shows that the urban network becomes more equitable and less concentrated in a few dominant cities. This shift suggests a more balanced distribution of resources, opportunities, and development across the urban agglomerations. Understanding the urban structure from the lens of future mobile networks offers deeper insight and perception of its future dimensional nature. By embracing this paradigm shift, we can retain knowledge about urban dynamics and pave the way for more effective urban management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unlung发布了新的文献求助10
刚刚
脑洞疼应助hanatae采纳,获得10
刚刚
刚刚
丑儿完成签到,获得积分10
1秒前
李桑完成签到,获得积分10
1秒前
1秒前
YF发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
周美言完成签到,获得积分10
4秒前
畅学天下完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
udye发布了新的文献求助10
7秒前
852应助灰灰采纳,获得10
8秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
Grammar in Action:Building comprehensive grammars of talk-in-interaction 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4164498
求助须知:如何正确求助?哪些是违规求助? 3699946
关于积分的说明 11682048
捐赠科研通 3389452
什么是DOI,文献DOI怎么找? 1858816
邀请新用户注册赠送积分活动 919280
科研通“疑难数据库(出版商)”最低求助积分说明 831988