A Regularized High-Dimensional Positive Definite Covariance Estimator with High-Frequency Data

估计员 计量经济学 协方差 文件夹 计算机科学 夏普比率 投资组合优化 经济 数学 财务 统计
作者
Liyuan Cui,Yongmiao Hong,Yingxing Li,Junhui Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (10): 7242-7264 被引量:1
标识
DOI:10.1287/mnsc.2022.04138
摘要

This paper proposes a novel large-dimensional positive definite covariance estimator for high-frequency data under a general factor model framework. We demonstrate an appealing connection between the proposed estimator and a weighted group least absolute shrinkage and selection operator (LASSO) penalized least-squares estimator. The proposed estimator improves on traditional principal component analysis by allowing for weak factors, whose signal strengths are weak relative to idiosyncratic components. Despite the presence of microstructure noises and asynchronous trading, the proposed estimator achieves guarded positive definiteness without sacrificing the convergence rate. To make our method fully operational, we provide an extended simultaneous alternating direction method of multipliers algorithm to solve the resultant constrained convex minimization problem efficiently. Empirically, we study the monthly high-frequency covariance structure of the stock constituents of the S&P 500 index from 2008 to 2016, using all traded stocks from the NYSE, AMEX, and NASDAQ stock markets to construct the high-frequency Fama-French four and extended eleven economic factors. We further examine the out-of-sample performance of the proposed method through vast portfolio allocations, which deliver significantly reduced out-of-sample portfolio risk and enhanced Sharpe ratios. The success of our method supports the usefulness of machine learning techniques in finance. This paper was accepted by Agostino Capponi, finance. Funding: This work was supported by the Research Grants Council, University Grants Committee [Grants 11500119, 11505522, 11505721, and 21504818] and the National Natural Science Foundation of China (NSFC) Basic Scientific Center Project [Grant 71988101], entitled as “Econometric Modelling and Economic Policy Studies”, as well as NSFC [Grants 71803166 and 72173104]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.04138 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助奶糖采纳,获得10
2秒前
xiuwen完成签到,获得积分10
3秒前
文静紫霜完成签到 ,获得积分10
3秒前
5秒前
6秒前
爆米花应助yanting采纳,获得10
7秒前
8秒前
10秒前
10秒前
青椒肉丝完成签到,获得积分10
11秒前
好好完成签到,获得积分10
12秒前
12秒前
可爱的函函应助刘明坤采纳,获得10
13秒前
科研通AI5应助尹佳怡采纳,获得10
14秒前
62ccc发布了新的文献求助10
14秒前
科研2121完成签到,获得积分10
14秒前
等风来、云飞扬完成签到,获得积分10
15秒前
奶糖发布了新的文献求助10
16秒前
整齐乐荷发布了新的文献求助10
16秒前
17秒前
kiki完成签到 ,获得积分10
19秒前
19秒前
研友_VZG7GZ应助嘻嘻采纳,获得10
19秒前
小马甲应助嘻嘻采纳,获得10
20秒前
20秒前
21秒前
21秒前
Benchen完成签到 ,获得积分10
23秒前
24秒前
乔垣结衣应助纯金金采纳,获得20
25秒前
灰色白面鸮完成签到,获得积分10
25秒前
闪闪翎发布了新的文献求助10
25秒前
Su发布了新的文献求助10
25秒前
26秒前
NexusExplorer应助WROBTY采纳,获得10
26秒前
科研通AI5应助张emo采纳,获得10
26秒前
28秒前
28秒前
realer发布了新的文献求助10
28秒前
火星上的羽毛完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960