Semi-supervised contrast learning-based segmentation of choroidal vessel in optical coherence tomography images

分割 人工智能 计算机科学 光学相干层析成像 深度学习 联营 模式识别(心理学) 编码器 计算机视觉 放射科 医学 操作系统
作者
Xiaoming Liu,Jingling Pan,Ying Zhang,Xiao Li,Jinshan Tang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (24): 245005-245005 被引量:1
标识
DOI:10.1088/1361-6560/ad0d42
摘要

Objective.Choroidal vessels account for 85% of all blood vessels in the eye, and the accurate segmentation of choroidal vessels from optical coherence tomography (OCT) images provides important support for the quantitative analysis of choroid-related diseases and the development of treatment plans. Although deep learning-based methods have great potential for segmentation, these methods rely on large amounts of well-labeled data, and the data collection process is both time-consuming and laborious.Approach.In this paper, we propose a novel asymmetric semi-supervised segmentation framework called SSCR, based on a student-teacher model, to segment choroidal vessels in OCT images. The proposed framework enhances the segmentation results with uncertainty-aware self-integration and transformation consistency techniques. Meanwhile, we designed an asymmetric encoder-decoder network called Pyramid Pooling SegFormer (APP-SFR) for choroidal vascular segmentation. The network combines local attention and global attention information to improve the model's ability to learn complex vascular features. Additionally, we proposed a boundary repair module that enhances boundary confidence by utilizing a repair head to re-predict selected fuzzy points and further refines the segmentation boundary.Main results.We conducted extensive experiments on three different datasets: the ChorVessel dataset with 400 OCT images, the Meibomian Glands (MG) dataset with 400 images, and the U2OS Cell Nucleus Dataset with 200 images. The proposed method achieved an average Dice score of 74.23% on the ChorVessel dataset, which is 2.95% higher than the fully supervised network (U-Net) and outperformed other comparison methods. In both the MG dataset and the U2OS cell nucleus dataset, our proposed SSCR method achieved average Dice scores of 80.10% and 87.26%, respectively.Significance.The experimental results show that our proposed methods achieve better segmentation accuracy than other state-of-the-art methods. The method is designed to help clinicians make rapid diagnoses of ophthalmic diseases and has potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友Bn发布了新的文献求助30
刚刚
iyiyii发布了新的文献求助10
刚刚
左安完成签到,获得积分10
2秒前
xyhua925完成签到,获得积分10
2秒前
2秒前
沐风完成签到,获得积分20
3秒前
4秒前
狂野书易完成签到,获得积分10
4秒前
自然黄豆发布了新的文献求助10
4秒前
Jasper应助哈哈哈哈采纳,获得10
5秒前
5秒前
5秒前
zxm发布了新的文献求助10
5秒前
汉堡包应助lkk采纳,获得10
6秒前
CipherSage应助luckin9采纳,获得10
6秒前
SK完成签到,获得积分20
7秒前
英俊绿柏完成签到,获得积分10
8秒前
10秒前
SK发布了新的文献求助10
11秒前
13秒前
15秒前
15秒前
淡然向松发布了新的文献求助10
18秒前
Akim应助自然黄豆采纳,获得10
18秒前
20秒前
包容新蕾发布了新的文献求助10
21秒前
Havibi完成签到,获得积分10
22秒前
bushidandanya发布了新的文献求助10
25秒前
淡然向松完成签到,获得积分10
25秒前
搜集达人应助SK采纳,获得10
26秒前
ZZZ完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
34秒前
35秒前
xixi完成签到 ,获得积分10
36秒前
37秒前
橘子完成签到,获得积分10
38秒前
39秒前
ding应助ma采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504202
关于积分的说明 11117355
捐赠科研通 3235526
什么是DOI,文献DOI怎么找? 1788299
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511