亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A mixing algorithm of ACO and ABC for solving path planning of mobile robot

蚁群优化算法 运动规划 人工蜂群算法 计算机科学 路径(计算) 算法 启发式 趋同(经济学) 数学优化 路径长度 管道(软件) 移动机器人 人工智能 蚁群 机器人 数学 经济 经济增长 程序设计语言 计算机网络
作者
Guangxin Li,Chao Liu,Lei Wu,Wensheng Xiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110868-110868 被引量:40
标识
DOI:10.1016/j.asoc.2023.110868
摘要

Path planning is involved in many applications such as trajectory planning, mobile robotics, pipeline layout, etc. Researchers use artificial intelligence algorithms to solve path planning efficiently, among which the ant colony algorithm (ACO) is one of the common intelligent algorithms to solve path planning problems. However, the traditional ACO has defects such as low early search efficiency and easy to fall into local optimum, while the artificial bee colony algorithm (ABC) has high search efficiency. Therefore, an improved ant colony optimization-artificial bee colony algorithm (IACO-IABC) is proposed in this study. IACO-IABC contains three mechanisms. First, the heuristic mechanism with directional information for the ACO is improved to enhance the efficiency of steering towards the target direction. Secondly, the novel neighborhood search mechanism of the employed bee and the onlooker bee in the ABC is presented to enhance the exploitation of optimal solutions. Then, the path optimization mechanism is introduced further to reduce the number of turn times in the planned path. To verify the performance of the IACO-IABC, a series of experiments are conducted with 10 different maps. The experiments compare nine variants of ACO and eight commonly used intelligent search algorithms, and the results show the advantages of the IACO-IABC in reducing the number of turn times and path lengths and enhancing the convergence speed of the algorithm. Compared to the best results of other algorithms, the average improvement percentages of the proposed algorithm in terms of the path turn times are 375%, 258.33%, 483.33%, 186.67%, 166.77% and 255.33%, further demonstrating the ability of IACO-IABC to obtain high-quality path planning result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助夏定海采纳,获得10
1秒前
bohn123完成签到 ,获得积分10
12秒前
pp‘s完成签到 ,获得积分10
13秒前
自然完成签到,获得积分10
13秒前
111完成签到 ,获得积分10
15秒前
16秒前
夏定海发布了新的文献求助10
19秒前
皮蛋robin汤完成签到 ,获得积分10
23秒前
27秒前
Mandy完成签到 ,获得积分10
32秒前
0x1orz发布了新的文献求助10
32秒前
天天快乐应助夏定海采纳,获得10
33秒前
典雅问寒应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
颜陌完成签到,获得积分10
44秒前
46秒前
勇敢的小狗完成签到,获得积分10
1分钟前
夏定海完成签到,获得积分10
1分钟前
DSUNNY完成签到 ,获得积分10
1分钟前
1分钟前
拾叁木完成签到,获得积分20
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
白苏发布了新的文献求助10
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
iorpi完成签到,获得积分10
1分钟前
毓雅完成签到,获得积分10
1分钟前
打打应助白苏采纳,获得10
1分钟前
huanger发布了新的文献求助10
1分钟前
脑洞疼应助粽子采纳,获得10
1分钟前
zzz完成签到 ,获得积分10
2分钟前
田様应助吴雪葵采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
啦啦啦完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
尹静涵完成签到 ,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540463
捐赠科研通 3106002
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264