医学
肺栓塞
深度学习
肺动脉造影
心室
放射科
计算机断层血管造影
人工智能
心脏病学
计算机断层摄影术
计算机科学
作者
Aissam Djahnine,Carole Lazarus,Mathieu Léderlin,Sebastien Mulé,Rafael Wiemker,Salim Si‐Mohamed,Émilien Jupin-Delevaux,Olivier Nempont,Youssef Skandarani,Mathieu De Craene,Sègbédji R. T. J. Goubalan,Caroline Raynaud,Younes Belkouchi,Amira Ben Afia,Clement Fabre,G. Ferretti,Constance de Margerie‐Mellon,Pierre Berge,Renan Liberge,Nicolas Elbaz
标识
DOI:10.1016/j.diii.2023.09.006
摘要
The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations.
科研通智能强力驱动
Strongly Powered by AbleSci AI