Semi-Supervised Urban Change Detection Using Multi-Modal Sentinel-1 SAR and Sentinel-2 MSI Data

计算机科学 合成孔径雷达 多光谱图像 遥感 深度学习 人工智能 分割 地理
作者
Sebastian Häfner,Yifang Ban,Andrea Nascetti
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (21): 5135-5135 被引量:5
标识
DOI:10.3390/rs15215135
摘要

Urbanization is progressing at an unprecedented rate in many places around the world. The Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 MultiSpectral Instrument (MSI) missions, combined with deep learning, offer new opportunities to accurately monitor urbanization at a global scale. Although the joint use of SAR and optical data has recently been investigated for urban change detection, existing data fusion methods rely heavily on the availability of sufficient training labels. Meanwhile, change detection methods addressing label scarcity are typically designed for single-sensor optical data. To overcome these limitations, we propose a semi-supervised urban change detection method that exploits unlabeled Sentinel-1 SAR and Sentinel-2 MSI data. Using bitemporal SAR and optical image pairs as inputs, the proposed multi-modal Siamese network predicts urban changes and performs built-up area segmentation for both timestamps. Additionally, we introduce a consistency loss, which penalizes inconsistent built-up area segmentation across sensor modalities on unlabeled data, leading to more robust features. To demonstrate the effectiveness of the proposed method, the SpaceNet 7 dataset, comprising multi-temporal building annotations from rapidly urbanizing areas across the globe, was enriched with Sentinel-1 SAR and Sentinel-2 MSI data. Subsequently, network performance was analyzed under label-scarce conditions by training the network on different fractions of the labeled training set. The proposed method achieved an F1 score of 0.555 when using all available training labels, and produced reasonable change detection results (F1 score of 0.491) even with as little as 10% of the labeled training data. In contrast, multi-modal supervised methods and semi-supervised methods using optical data failed to exceed an F1 score of 0.402 under this condition. Code and data are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
悠明夜月完成签到 ,获得积分10
5秒前
7秒前
朝阳完成签到 ,获得积分10
8秒前
叶痕TNT完成签到 ,获得积分10
11秒前
Miyano0818发布了新的文献求助30
12秒前
Alandia完成签到 ,获得积分10
15秒前
蒲蒲完成签到 ,获得积分10
20秒前
三个气的大门完成签到 ,获得积分10
20秒前
liang19640908完成签到 ,获得积分10
23秒前
cgs完成签到 ,获得积分10
25秒前
乐观的星月完成签到 ,获得积分10
25秒前
眯眯眼的访冬完成签到 ,获得积分10
26秒前
Tonald Yang完成签到 ,获得积分20
27秒前
fff完成签到 ,获得积分10
27秒前
王多肉完成签到,获得积分10
31秒前
36秒前
CodeCraft应助小小铱采纳,获得30
39秒前
自由的无色完成签到 ,获得积分10
41秒前
小马甲应助lopper采纳,获得30
42秒前
loren313完成签到,获得积分0
47秒前
xiao完成签到 ,获得积分10
47秒前
xsy完成签到 ,获得积分10
57秒前
Estella完成签到 ,获得积分10
1分钟前
小小铱完成签到,获得积分10
1分钟前
sanker完成签到 ,获得积分10
1分钟前
CuteG完成签到 ,获得积分10
1分钟前
1分钟前
发发完成签到 ,获得积分10
1分钟前
活力的珊完成签到 ,获得积分10
1分钟前
坏坏的快乐完成签到,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
呆萌滑板完成签到 ,获得积分10
1分钟前
xl完成签到 ,获得积分10
1分钟前
ocean完成签到,获得积分10
1分钟前
1分钟前
Fern完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
2分钟前
东方欲晓完成签到 ,获得积分0
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353