Reasoning and causal inference regarding surgical options for patients with low‐grade gliomas using machine learning: A SEER‐based study

因果推理 医学 推论 随机对照试验 肿瘤科 内科学 人工智能 病理 计算机科学
作者
Enzhao Zhu,Weizhong Shi,Zhihao Chen,Jiayi Wang,Ping Ai,Wenqin Xiao,Zhu Min,Zhifeng Xu,Lingxiao Xu,Tongwen Sun,Jingyu Liu,Xuetong Xu,Dan Shan
出处
期刊:Cancer Medicine [Wiley]
标识
DOI:10.1002/cam4.6666
摘要

Due to the heterogeneity of low-grade gliomas (LGGs), the lack of randomized control trials, and strong clinical evidence, the effect of the extent of resection (EOR) is currently controversial.To determine the best choice between subtotal resection (STR) and gross-total resection (GTR) for individual patients and to identify features that are potentially relevant to treatment heterogeneity.Patients were enrolled from the SEER database. We used a novel DL approach to make treatment recommendations for patients with LGG. We also made causal inference of the average treatment effect (ATE) of GTR compared with STR.The patients were divided into the Consis. and In-consis. groups based on whether their actual treatment and model recommendations were consistent. Better brain cancer-specific survival (BCSS) outcomes in the Consis. group was observed. Overall, we also identified two subgroups that showed strong heterogeneity in response to GTR. By interpreting the models, we identified numerous variables that may be related to treatment heterogeneity.This is the first study to infer the individual treatment effect, make treatment recommendation, and guide surgical options through deep learning approach in LGG research. Through causal inference, we found that heterogeneous responses to STR and GTR exist in patients with LGG. Visualization of the model yielded several factors that contribute to treatment heterogeneity, which are worthy of further discussion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizejiong发布了新的文献求助10
刚刚
i1完成签到 ,获得积分10
1秒前
冷酷沛柔完成签到,获得积分10
3秒前
内向映天完成签到 ,获得积分10
5秒前
zhi完成签到,获得积分10
8秒前
影子芳香完成签到 ,获得积分10
9秒前
lizejiong完成签到,获得积分20
11秒前
踏实的大地完成签到,获得积分10
19秒前
糖优优完成签到,获得积分10
20秒前
俗签完成签到,获得积分10
22秒前
29秒前
若影完成签到,获得积分10
31秒前
蘇q完成签到 ,获得积分10
32秒前
39秒前
含蓄翠安完成签到,获得积分10
40秒前
科研通AI5应助潇洒小松鼠采纳,获得10
41秒前
42秒前
light完成签到 ,获得积分10
42秒前
mljever完成签到,获得积分10
42秒前
爱到凌尘&完成签到,获得积分20
43秒前
满意项链发布了新的文献求助10
44秒前
黑白发布了新的文献求助20
44秒前
44秒前
生尽证提发布了新的文献求助10
48秒前
霍师傅发布了新的文献求助10
49秒前
科研通AI5应助内向的宛丝采纳,获得10
1分钟前
亭亭如盖完成签到,获得积分10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
niu应助科研通管家采纳,获得10
1分钟前
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
niu应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
勤恳立轩应助科研通管家采纳,获得10
1分钟前
grs完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315