How Legal Knowledge Graph Can Help Predict Charges for Legal Text

计算机科学 钥匙(锁) 图形 领域知识 人工智能 理论计算机科学 数据挖掘 情报检索 自然语言处理 计算机安全
作者
Shang Gao,Rina Sa,Yanling Li,Fengpei Ge,Haiqing Yu,Sukun Wang,Zhongyi Miao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 408-420 被引量:1
标识
DOI:10.1007/978-981-99-8076-5_30
摘要

The existing methods for predicting Easily Confused Charges (ECC) primarily rely on factual descriptions from legal cases. However, these approaches overlook some key information hidden in these descriptions, resulting in an inability to accurately differentiate between ECC. Legal domain knowledge graphs can showcase personal information and criminal processes in cases, but they primarily focus on entities in cases of insolation while ignoring the logical relationships between these entities. Different relationships often lead to distinct charges. To address these problems, this paper proposes a charge prediction model that integrates a Criminal Behavior Knowledge Graph (CBKG), called Charge Prediction Knowledge Graph (CP-KG). Firstly, we defined a diverse range of legal entities and relationships based on the characteristics of ECC. We conducted fine-grained annotation on key elements and logical relationships in the factual descriptions. Subsequently, we matched the descriptions with the CBKG to extract the key elements, which were then encoded by Text Convolutional Neural Network (TextCNN). Additionally, we extracted case subgraphs containing sequential behaviors from the CBKG based on the factual descriptions and encoded them using a Graph Attention Network (GAT). Finally, we concatenated these representations of key elements, case subgraphs, and factual descriptions, collectively used for predicting the charges of the defendant. To evaluate the CP-KG, we conducted experiments on two charge prediction datasets consisting of real legal cases. The experimental results demonstrate that the CP-KG achieves scores of 99.10% and 90.23% in the Macro-F1 respectively. Compared to the baseline methods, the CP-KG shows significant improvements with 25.79% and 13.82% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tans0008完成签到,获得积分10
刚刚
WSH发布了新的文献求助10
刚刚
18340312141完成签到,获得积分10
1秒前
月半完成签到,获得积分10
2秒前
材料若饥完成签到,获得积分10
4秒前
Aiden完成签到,获得积分10
4秒前
咎青文完成签到,获得积分10
5秒前
shinen完成签到,获得积分10
7秒前
虚心茉莉完成签到,获得积分10
7秒前
默然的歌完成签到 ,获得积分10
9秒前
明亮无颜完成签到,获得积分10
10秒前
Jasper应助Liu丰采纳,获得10
10秒前
14秒前
拾石子完成签到 ,获得积分10
16秒前
demom完成签到 ,获得积分10
16秒前
陈永伟完成签到,获得积分10
17秒前
骑着蜗牛追导弹完成签到 ,获得积分10
17秒前
yj91完成签到 ,获得积分10
18秒前
123123完成签到 ,获得积分10
18秒前
18秒前
Nichols给liyu的求助进行了留言
18秒前
柑橘发布了新的文献求助10
18秒前
HK完成签到 ,获得积分10
19秒前
21秒前
流北爷完成签到,获得积分10
21秒前
Liu丰发布了新的文献求助10
21秒前
轩辕远航完成签到 ,获得积分10
21秒前
24秒前
Liu丰完成签到,获得积分10
25秒前
小刘哥加油完成签到 ,获得积分10
25秒前
26秒前
iceink完成签到,获得积分10
26秒前
Ysj完成签到,获得积分10
27秒前
JFP完成签到,获得积分10
29秒前
hyl发布了新的文献求助10
30秒前
Nostalgia发布了新的文献求助10
30秒前
时来运转发布了新的文献求助20
30秒前
Augusterny完成签到 ,获得积分10
32秒前
34秒前
aurora完成签到,获得积分10
35秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801134
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330258
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681383
邀请新用户注册赠送积分活动 807540
科研通“疑难数据库(出版商)”最低求助积分说明 763728