Surface-Enhanced Raman Scattering-Based Surface Chemotaxonomy: Combining Bacteria Extracellular Matrices and Machine Learning for Rapid and Universal Species Identification

生物信息学 计算生物学 生物 生物系统 细菌 拉曼散射 拉曼光谱 基因 生物化学 遗传学 物理 光学
作者
Shi Xuan Leong,Emily Xi Tan,Xuemei Han,Irvan Luhung,Ngu War Aung,Lam Bang Thanh Nguyen,Si Yan Tan,Haitao Li,In Yee Phang,Stephan C. Schuster,Xing Yi Ling
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (22): 23132-23143 被引量:20
标识
DOI:10.1021/acsnano.3c09101
摘要

Rapid, universal, and accurate identification of bacteria in their natural states is necessary for on-site environmental monitoring and fundamental microbial research. Surface-enhanced Raman scattering (SERS) spectroscopy emerges as an attractive tool due to its molecule-specific spectral fingerprinting and multiplexing capabilities, as well as portability and speed of readout. Here, we develop a SERS-based surface chemotaxonomy that uses bacterial extracellular matrices (ECMs) as proxy biosignatures to hierarchically classify bacteria based on their shared surface biochemical characteristics to eventually identify six distinct bacterial species at >98% classification accuracy. Corroborating with in silico simulations, we establish a three-way inter-relation between the bacteria identity, their ECM surface characteristics, and their SERS spectral fingerprints. The SERS spectra effectively capture multitiered surface biochemical insights including ensemble surface characteristics, e.g., charge and biochemical profiles, and molecular-level information, e.g., types and numbers of functional groups. Our surface chemotaxonomy thus offers an orthogonal taxonomic definition to traditional classification methods and is achieved without gene amplification, biochemical testing, or specific biomarker recognition, which holds great promise for point-of-need applications and microbial research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doctorbin完成签到 ,获得积分10
2秒前
大闪电发布了新的文献求助10
2秒前
2秒前
123发布了新的文献求助10
5秒前
7秒前
HHEHK完成签到 ,获得积分10
8秒前
科研民工完成签到,获得积分10
9秒前
科研通AI5应助酥酥采纳,获得10
9秒前
大鼻子的新四岁完成签到,获得积分10
10秒前
lizhiqian2024完成签到,获得积分20
11秒前
丘比特应助无限的念梦采纳,获得10
11秒前
科研通AI5应助e746700020采纳,获得10
13秒前
777发布了新的文献求助10
13秒前
大闪电完成签到,获得积分20
14秒前
大个应助孤独的寻双采纳,获得10
14秒前
18秒前
19秒前
19秒前
科研通AI5应助howl采纳,获得10
19秒前
777完成签到,获得积分10
20秒前
22秒前
guoyi完成签到 ,获得积分10
22秒前
顺心凡发布了新的文献求助10
23秒前
科研通AI2S应助ys采纳,获得10
24秒前
海豚有海发布了新的文献求助10
25秒前
在水一方应助幸福果汁采纳,获得10
25秒前
兰彻发布了新的文献求助10
26秒前
阔达斑马应助KKK研采纳,获得30
26秒前
guoyi关注了科研通微信公众号
26秒前
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
27秒前
充电宝应助科研通管家采纳,获得30
27秒前
情怀应助科研通管家采纳,获得10
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781649
求助须知:如何正确求助?哪些是违规求助? 3327217
关于积分的说明 10230067
捐赠科研通 3042074
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774