Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary

置信区间 危险系数 医学 内科学 癌症 肿瘤科 分类器(UML) 人工智能 计算机科学
作者
Intae Moon,Jaclyn LoPiccolo,Sylvan C. Baca,Lynette M. Sholl,Kenneth L. Kehl,Michael J. Hassett,David Liu,Deborah Schrag,Alexander Gusev
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:29 (8): 2057-2067 被引量:48
标识
DOI:10.1038/s41591-023-02482-6
摘要

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3–5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ( $$\ge 0.9$$ ) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210–0.570; P = $$2.32\times {10}^{-5}$$ ). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP. A machine-learning classifier predicts the origin of cancer of unknown primary based on electronic health records and next-generation sequencing data, showing that patients treated accordingly to model predictions had significantly better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaly发布了新的文献求助10
刚刚
Ava应助HJJHJH采纳,获得20
刚刚
何lalala完成签到,获得积分20
刚刚
1秒前
OutMan发布了新的文献求助10
1秒前
科研通AI5应助江峰采纳,获得10
1秒前
所所应助也曦采纳,获得10
2秒前
noya仙贝完成签到,获得积分10
2秒前
Hammer发布了新的文献求助10
4秒前
123lx完成签到,获得积分10
4秒前
6秒前
cocofan完成签到 ,获得积分10
6秒前
6秒前
Zhy完成签到,获得积分10
7秒前
8秒前
9秒前
jnoker完成签到 ,获得积分10
9秒前
李小伟发布了新的文献求助10
12秒前
江峰发布了新的文献求助10
13秒前
13秒前
14秒前
jackie发布了新的文献求助30
15秒前
16秒前
buhuidanhuixue完成签到,获得积分10
16秒前
17秒前
orixero应助cj采纳,获得10
17秒前
沉默的若云完成签到,获得积分10
18秒前
阿超完成签到,获得积分10
18秒前
麦苗果果发布了新的文献求助10
20秒前
科研通AI5应助syjssxwz采纳,获得10
21秒前
22秒前
呼呼啦啦完成签到,获得积分10
22秒前
jackie完成签到,获得积分20
23秒前
24秒前
26秒前
tzjz_zrz完成签到,获得积分10
27秒前
思源应助iebdus123采纳,获得10
27秒前
现代的南风完成签到 ,获得积分10
28秒前
28秒前
cj完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793321
求助须知:如何正确求助?哪些是违规求助? 3338017
关于积分的说明 10288476
捐赠科研通 3054654
什么是DOI,文献DOI怎么找? 1676108
邀请新用户注册赠送积分活动 804109
科研通“疑难数据库(出版商)”最低求助积分说明 761757