Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary

置信区间 危险系数 医学 内科学 癌症 肿瘤科 分类器(UML) 人工智能 计算机科学
作者
Intae Moon,Jaclyn LoPiccolo,Sylvan C. Baca,Lynette M. Sholl,Kenneth L. Kehl,Michael J. Hassett,David Liu,Deborah Schrag,Alexander Gusev
出处
期刊:Nature Medicine [Springer Nature]
卷期号:29 (8): 2057-2067 被引量:67
标识
DOI:10.1038/s41591-023-02482-6
摘要

Cancer of unknown primary (CUP) is a type of cancer that cannot be traced back to its primary site and accounts for 3–5% of all cancers. Established targeted therapies are lacking for CUP, leading to generally poor outcomes. We developed OncoNPC, a machine-learning classifier trained on targeted next-generation sequencing (NGS) data from 36,445 tumors across 22 cancer types from three institutions. Oncology NGS-based primary cancer-type classifier (OncoNPC) achieved a weighted F1 score of 0.942 for high confidence predictions ( $$\ge 0.9$$ ) on held-out tumor samples, which made up 65.2% of all the held-out samples. When applied to 971 CUP tumors collected at the Dana-Farber Cancer Institute, OncoNPC predicted primary cancer types with high confidence in 41.2% of the tumors. OncoNPC also identified CUP subgroups with significantly higher polygenic germline risk for the predicted cancer types and with significantly different survival outcomes. Notably, patients with CUP who received first palliative intent treatments concordant with their OncoNPC-predicted cancers had significantly better outcomes (hazard ratio (HR) = 0.348; 95% confidence interval (CI) = 0.210–0.570; P = $$2.32\times {10}^{-5}$$ ). Furthermore, OncoNPC enabled a 2.2-fold increase in patients with CUP who could have received genomically guided therapies. OncoNPC thus provides evidence of distinct CUP subgroups and offers the potential for clinical decision support for managing patients with CUP. A machine-learning classifier predicts the origin of cancer of unknown primary based on electronic health records and next-generation sequencing data, showing that patients treated accordingly to model predictions had significantly better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7890733发布了新的文献求助10
刚刚
ggb完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
自信向梦发布了新的文献求助30
1秒前
柚吱完成签到,获得积分10
1秒前
哈哈哈哈发布了新的文献求助10
2秒前
jpc完成签到,获得积分10
2秒前
xxfsx应助润润轩轩采纳,获得10
2秒前
2秒前
2秒前
Liuxinyiliu完成签到,获得积分10
2秒前
顾矜应助Linkingrains采纳,获得10
3秒前
3秒前
莘莘完成签到,获得积分10
4秒前
烟花应助博士僧采纳,获得10
4秒前
CHEN123456完成签到,获得积分10
4秒前
浮游应助进击的小白菜采纳,获得10
5秒前
思源应助黄鱼采纳,获得10
5秒前
6秒前
xqing完成签到,获得积分10
7秒前
小陆完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
Banila发布了新的文献求助10
9秒前
9秒前
laoyi完成签到,获得积分10
9秒前
jason668完成签到 ,获得积分10
9秒前
科目三应助ii采纳,获得10
10秒前
槽牙发布了新的文献求助10
10秒前
10秒前
哎呦完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
Lucas应助陈冠羽采纳,获得10
12秒前
12秒前
12秒前
子小孙发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480837
求助须知:如何正确求助?哪些是违规求助? 4581998
关于积分的说明 14382987
捐赠科研通 4510621
什么是DOI,文献DOI怎么找? 2471965
邀请新用户注册赠送积分活动 1458286
关于科研通互助平台的介绍 1431972