Operation stage division and RUL prediction of bearings based on 1DCNN-ON-LSTM

计算机科学 保险丝(电气) 方位(导航) 人工智能 降级(电信) 阶段(地层学) 一般化 模式识别(心理学) 特征(语言学) 卷积神经网络 点(几何) 数据挖掘 工程类 数学 数学分析 哲学 古生物学 电气工程 生物 电信 语言学 几何学
作者
Runxia Guo,Haonan Li,Chao Huang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025035-025035 被引量:6
标识
DOI:10.1088/1361-6501/ad0e3a
摘要

Abstract Remaining useful life (RUL) prediction of bearings is significantly important to ensure reliable operation of bearings. In practice, it is routinely impossible to obtain the full life cycle degradation data of bearings that needs to be used in prediction. The accuracy of the RUL prediction of bearings is often affected by incomplete degradation data. Regarding this situation, this paper proposes a multi-sensor three-stage RUL prediction framework based on the one-dimensional convolutional ordered neuron long short-term memory (1DCNN-ON-LSTM) neural network. Firstly, 1DCNN is used to extract spatial features adaptively from multi-sensor’s data and fuse them into one-dimensional feature. Next, the unsupervised hierarchy mechanism of time series information based ON-LSTM is developed to determine the ‘initial degradation stage point’ and ‘rapid degradation stage point’ of the bearing from the one-dimensional feature. Once the signal features collected by sensors input to the model reach the degradation stage point, select the corresponding sensitive features as input and construct the 1DCNN-ON-LSTM model that performs RUL prediction after the degradation stage point to improve the prediction accuracy of the model. Based on the proposed hierarchy mechanism, the bearings’ operation process is divided into three operation stages: normal stage, initial degradation stage and rapid degradation stage. Finally, the experiments verify that the proposed method can effectively divide the operation stages of bearings to predict the RUL and improve the generalization ability and prediction accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu发布了新的文献求助30
刚刚
1秒前
孟冬完成签到 ,获得积分10
3秒前
4秒前
烟花应助科研小黑采纳,获得10
5秒前
星中一点光完成签到,获得积分10
6秒前
舒服的灵安完成签到 ,获得积分10
6秒前
7秒前
Sharon发布了新的文献求助10
7秒前
7秒前
pluto应助百灵采纳,获得10
8秒前
显隐完成签到,获得积分10
9秒前
10秒前
Sulky完成签到,获得积分10
10秒前
沫瑾天发布了新的文献求助10
10秒前
lixiaolu发布了新的文献求助10
11秒前
12秒前
科研通AI5应助汤圆采纳,获得10
12秒前
大象舞台发布了新的文献求助10
12秒前
sci发布了新的文献求助10
12秒前
Sharon完成签到,获得积分10
13秒前
显隐发布了新的文献求助10
14秒前
卡卡西应助九载采纳,获得10
16秒前
16秒前
长风完成签到,获得积分10
17秒前
wanci应助蔡继海采纳,获得10
17秒前
keep完成签到,获得积分10
18秒前
体贴坤坤完成签到 ,获得积分10
18秒前
19秒前
圈儿多尼发布了新的文献求助10
19秒前
Eddy完成签到,获得积分10
19秒前
20秒前
英俊的铭应助达鸟啊采纳,获得10
22秒前
22秒前
JF123_完成签到 ,获得积分10
23秒前
王小磊完成签到,获得积分10
24秒前
orixero应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Oxford Picture Dictionary 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808902
求助须知:如何正确求助?哪些是违规求助? 3353628
关于积分的说明 10366242
捐赠科研通 3069900
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810743
科研通“疑难数据库(出版商)”最低求助积分说明 766320