GGI-DDI: Identification for key molecular substructures by granule learning to interpret predicted drug–drug interactions

可解释性 计算机科学 人工智能 机器学习 药物靶点 药品 药物与药物的相互作用 训练集 钥匙(锁) 药理学 医学 计算机安全
作者
Hui Yu,Jing Wang,Shiyu Zhao,Omayo Silver,Zun Liu,JingTao Yao,Jian‐Yu Shi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122500-122500 被引量:1
标识
DOI:10.1016/j.eswa.2023.122500
摘要

Deep learning-based approaches have achieved promising performance in predicting drug-drug interactions (DDIs). Nevertheless, a significant drawback of these approaches is their limited interpretability, hindering their practical applicability for clinicians. Based on current research findings, drug interactions frequently arise from specific substructures or functional groups present in drugs. To enhance the interpretability of deep learning models, we propose a novel end-to-end learning approach that employs granular computing to identify pivotal substructures instead of using conventional atom-based or predefined molecular fingerprint methods to predict DDIs. We refer to this model as "GGI-DDI" (Granule-Granule Interaction for Drug-Drug Interaction). In this method, drugs are granulated into a set of coarser granules that represent the key substructures or functional groups of drugs. Subsequently, the detection of DDIs occurs through the examination of interactions among these granules, aligning more closely with human cognitive patterns. We conducted thorough experiments on the TWOSIDES dataset, and the results show that GGI-DDI achieved impeccable accuracy in predicting DDIs. We compared GGI-DDI to state-of-the-art baseline models including DDIMDL, GoGNN, DNN, STNN-DDI and GMPNN-CS, GGI-DDI almost consistently outperforms the baselines across all metrics in terms of Accuracy (Acc), Area under the receiver operating characteristic (Auc), Area under precision recall curve (Aupr) and Precision (Pre) in both transductive and inductive scenarios. Finally, we provide case studies to illustrate how GGI-DDI can effectively reveal important substructure pairs across drugs about a specific DDI type, offering insights into the underlying mechanism of these interactions. We find that this interpretability can serve as valuable guidance in the advancement of novel drug development and poly-drug therapy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁马冰河完成签到,获得积分10
刚刚
科研通AI5应助郭叠采纳,获得10
3秒前
搞怪故事发布了新的文献求助10
3秒前
4秒前
rfyr发布了新的文献求助10
4秒前
虚心的阿松完成签到,获得积分10
5秒前
mengliu完成签到,获得积分10
5秒前
5秒前
Dicy发布了新的文献求助10
10秒前
11秒前
lijf2024完成签到,获得积分10
13秒前
13秒前
俏皮松鼠发布了新的文献求助10
14秒前
15秒前
郭叠完成签到,获得积分10
15秒前
段asd完成签到,获得积分10
16秒前
彭于晏应助Dandelion采纳,获得10
18秒前
科研通AI5应助搞怪故事采纳,获得10
20秒前
20秒前
21秒前
22秒前
健康的勒完成签到,获得积分10
22秒前
xsx完成签到,获得积分10
23秒前
24秒前
111111发布了新的文献求助10
24秒前
丘比特应助安详飞鸟采纳,获得10
25秒前
科研通AI5应助Dicy采纳,获得10
26秒前
jsjjs发布了新的文献求助10
26秒前
围城发布了新的文献求助10
27秒前
Lucas应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI2S应助俏皮松鼠采纳,获得10
30秒前
胡茶茶发布了新的文献求助10
31秒前
31秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792198
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10281070
捐赠科研通 3053210
什么是DOI,文献DOI怎么找? 1675507
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761429