Explainable machine learning for hydrogen diffusion in metals and random binary alloys

二进制数 随机森林 扩散 特征(语言学) 机器学习 热扩散率 人工智能 计算机科学 统计物理学 材料科学 化学 热力学 数学 物理 语言学 哲学 算术 有机化学
作者
Grace M. Lu,Matthew Witman,Sapan Agarwal,Vitalie Stavila,Dallas R. Trinkle
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (10) 被引量:10
标识
DOI:10.1103/physrevmaterials.7.105402
摘要

Hydrogen diffusion in metals and alloys plays an important role in the discovery of new materials for fuel cell and energy storage technology. While analytic models use hand-selected features that have clear physical ties to hydrogen diffusion, they often lack accuracy when making quantitative predictions. Machine learning models are capable of making accurate predictions, but their inner workings are obscured, rendering it unclear which physical features are truly important. To develop interpretable machine learning models to predict the activation energies of hydrogen diffusion in metals and random binary alloys, we create a database for physical and chemical properties of the species and use it to fit six machine learning models. Our models achieve root-mean-squared errors between 98--119 meV on the testing data and accurately predict that elemental Ru has a large activation energy, while elemental Cr and Fe have small activation energies. By analyzing the feature importances of these fitted models, we identify relevant physical properties for predicting hydrogen diffusivity. While metrics for measuring the individual feature importances for machine learning models exist, correlations between the features lead to disagreement between models and limit the conclusions that can be drawn. Instead grouped feature importance, formed by combining the features via their correlations, agree across the six models and reveal that the two groups containing the packing factor and electronic specific heat are particularly significant for predicting hydrogen diffusion in metals and random binary alloys. This framework allows us to interpret machine learning models and enables rapid screening of new materials with the desired rates of hydrogen diffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助窝恁叠采纳,获得10
刚刚
浮游应助俏皮的夏岚采纳,获得10
1秒前
深情安青应助pattzz采纳,获得10
3秒前
派大彪完成签到,获得积分10
3秒前
763完成签到 ,获得积分10
4秒前
4秒前
5秒前
852应助程夏宇采纳,获得10
6秒前
唐ZY123发布了新的文献求助30
6秒前
duanduan123发布了新的文献求助10
7秒前
Solar energy发布了新的文献求助10
7秒前
满天星完成签到,获得积分10
9秒前
white33发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
大老黑完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
所所应助辛飞飞采纳,获得10
13秒前
张子三完成签到,获得积分10
13秒前
13秒前
善学以致用应助qing采纳,获得10
13秒前
14秒前
今后应助唐ZY123采纳,获得30
15秒前
15秒前
16秒前
17秒前
大力洙发布了新的文献求助10
18秒前
渣渣梅发布了新的文献求助10
18秒前
phoebe驳回了田様应助
18秒前
cyy1226发布了新的文献求助10
18秒前
18秒前
窝恁叠发布了新的文献求助10
18秒前
超级小蚂蚁完成签到,获得积分10
18秒前
蛋黄发布了新的文献求助10
21秒前
22秒前
ozz完成签到,获得积分10
22秒前
23秒前
tangxinhebaodan完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900