Dual-channel early rumor detection based on factual evidence

谣言 计算机科学 频道(广播) 危害 对偶(语法数字) 计算机安全 电信 心理学 政治学 艺术 文学类 社会心理学 公共关系
作者
Yue Wu,Jiehu Sun,Yuan Xue,Zengxi Huang,Jiangchun Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121928-121928 被引量:3
标识
DOI:10.1016/j.eswa.2023.121928
摘要

Social media facilitates people's free expression and communication, but it also provides a platform for the generation and dissemination of rumors. In order to curb the spread of rumors in time and minimize their harm, early rumor detection methods were born and became a research hotspot. Early rumor detection requires a balance between accuracy and timeliness, but most existing methods only focused on accuracy and neglected efficiency. In this regard, we analyze a large number of Internet rumors and found that some rumors have been repeatedly spread after a small amount of modification. Such old rumors can be quickly and easily identified through factual evidence, while other new rumors require more clues and time to crack. Based on this insight, we propose a dual-channel early rumor detection model named ERD-DC (Early Rumor Detection-Dual-Channel), which leverages deep learning algorithms. Specifically, ERD-DC consists of two distinct channels, a fast channel referred to as channel-E (channel-Easy) and a slow channel named channel-D (channel-Difficult). In the ERD-DC, posts are divided into ‘easy-to-identify’ and ‘difficult-to-identify’ based on the availability of relevant evidence online. Subsequently, both types of posts are directed to their respective channels for detection. Channel-E focuses on identifying easy-to-identify rumors through a straightforward and swift post-evidence matching process, primarily aimed at enhancing timeliness. In parallel, channel-D is tasked with uncovering difficult-to-identify rumors, leveraging a more comprehensive analysis of user behaviors and posts transmission structures to elevate overall accuracy. Experimental results on two real datasets demonstrate that ERD-DC outperforms other state-of-the-art models significantly in early rumor detection with an accuracy rate of 84%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小鱼发布了新的文献求助20
刚刚
1秒前
1秒前
JIyong完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
何1发布了新的文献求助10
1秒前
2秒前
36038138完成签到 ,获得积分10
2秒前
111完成签到,获得积分20
2秒前
2秒前
3秒前
李健应助前行者采纳,获得30
3秒前
rrrrrrry发布了新的文献求助10
3秒前
柚子发布了新的文献求助10
4秒前
4秒前
4秒前
小二郎应助年轻尔丝采纳,获得10
4秒前
冷静书白发布了新的文献求助20
5秒前
jenningseastera应助MAVS采纳,获得10
5秒前
6秒前
平常无颜完成签到,获得积分10
6秒前
6秒前
华仔应助九月清晨采纳,获得10
6秒前
程新亮完成签到 ,获得积分10
6秒前
6秒前
Pikno123应助Maestro_S采纳,获得40
7秒前
丘比特应助Steven采纳,获得10
7秒前
123发布了新的文献求助10
8秒前
8秒前
研友_VZG7GZ应助花痴的无招采纳,获得10
8秒前
8秒前
8秒前
8秒前
李爱国应助大壮采纳,获得10
8秒前
李健的粉丝团团长应助小M采纳,获得10
8秒前
花开富贵发布了新的文献求助10
8秒前
qkl发布了新的文献求助10
9秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846