Time-to-Event Modeling with Hypernetwork based Hawkes Process

事件(粒子物理) 计算机科学 过程(计算) 时间戳 遗忘 人工智能 序列(生物学) 点过程 点(几何) 机器学习 数据挖掘 实时计算 数学 生物 几何学 统计 操作系统 量子力学 物理 哲学 遗传学 语言学
作者
Manisha Dubey,P. K. Srijith,Maunendra Sankar Desarkar
标识
DOI:10.1145/3580305.3599912
摘要

Many real-world applications are associated with collection of events with timestamps, known as time-to-event data. Earthquake occurrences, social networks, and user activity logs can be represented as a sequence of discrete events observed in continuous time. Temporal point process serves as an essential tool for modeling such time-to-event data in continuous time space. Despite having massive amounts of event sequence data from various domains like social media, healthcare etc., real world application of temporal point process faces two major challenges: 1) it is not generalizable to predict events from unseen event sequences in dynamic environment 2) they are not capable of thriving in continually evolving environment with minimal supervision while retaining previously learnt knowledge. To tackle these issues, we propose HyperHawkes, a hypernetwork based temporal point process framework which is capable of modeling time of event occurrence for unseen sequences and consequently, zero-shot learning for time-to-event modeling. We also develop a hypernetwork based continually learning temporal point process for continuous modeling of time-to-event sequences with minimal forgetting. HyperHawkes augments the temporal point process with zero-shot modeling and continual learning capabilities. We demonstrate the application of the proposed framework through our experiments on real-world datasets. Our results show the efficacy of the proposed approach in terms of predicting future events under zero-shot regime for unseen event sequences. We also show that the proposed model is able to learn the time-to-event sequences continually while retaining information from previous event sequences, mitigating catastrophic forgetting in neural temporal point process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
自觉柠檬发布了新的文献求助10
1秒前
握瑾怀瑜完成签到 ,获得积分0
2秒前
Shaewei完成签到,获得积分20
2秒前
3秒前
3秒前
北北完成签到,获得积分10
4秒前
靓丽念薇完成签到,获得积分10
6秒前
幸福完成签到 ,获得积分10
6秒前
Shaewei发布了新的文献求助30
7秒前
圆圆完成签到,获得积分10
7秒前
李健的小迷弟应助JackRen采纳,获得10
8秒前
小超超发布了新的文献求助10
8秒前
Jasper应助橘子海采纳,获得10
9秒前
TUSK关注了科研通微信公众号
11秒前
11秒前
12秒前
完美采梦完成签到 ,获得积分10
12秒前
西门子云完成签到,获得积分10
15秒前
Tingting完成签到 ,获得积分10
16秒前
陈阳发布了新的文献求助10
17秒前
18秒前
Thien应助elysia采纳,获得10
20秒前
ccc完成签到 ,获得积分10
20秒前
思源应助Ec_w采纳,获得10
21秒前
能干的太英完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助无辜的南瓜采纳,获得10
26秒前
Echo1128完成签到 ,获得积分10
26秒前
27秒前
27秒前
29秒前
30秒前
Ying发布了新的文献求助10
30秒前
lihoujunertou发布了新的文献求助30
30秒前
31秒前
冯先森ya完成签到,获得积分10
31秒前
32秒前
34秒前
JackRen发布了新的文献求助10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757