Collaborative Computing Optimization in Train-Edge-Cloud-Based Smart Train Systems Using Risk-sensitive Reinforcement Learning

计算机科学 强化学习 分布式计算 云计算 边缘计算 火车 服务器 效用计算 计算机网络 人工智能 地图学 云安全计算 地理 操作系统
作者
Sen Lin,Li Zhu,F. Richard Yu,Yang Li
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tvt.2023.3325674
摘要

With the advent of the intelligent and digital era, intelligent urban rail transit systems have been a research focus. As the core part of intelligent urban rail transit systems, smart trains are empowered by various intelligent applications. While improving system performance and reducing system risk, intelligent applications demand a large amount of computing power. However, it is challenging to provide simultaneously all intelligent applications for smart trains due to limited onboard computing resources. In this paper, we design a trainedge-cloud (TEC) collaborative computing framework for train intelligent computing tasks. We aim to develop a TEC-based collaborative computing scheme to minimize the task processing delay with edge computing resource constraints. Considering the unique environment of smart train systems, we design a risk-sensitive reinforcement learning (RL) algorithm to realize collaborative computing optimization. We design a novel risk function in the system by jointly considering the computing load of edge intelligence (EI) servers and the characteristics of the urban rail transit systems. Moreover, we optimize the proposed risk-sensitive RL algorithm by using quantum representation and functions to accelerate its convergence speed. We design the TEC-based collaborative computing framework and design the quantum-inspired risk-sensitive RL algorithm to formulate the strategies for task scheduling. Comprehensive simulation results indicate that the algorithm adopted in this paper can significantly reduce the task processing delay while satisfying EI servers' computing resource constraints. The quantum-inspiredoptimized risk-sensitive RL model dramatically improves the model convergence speed
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生瓜蛋子完成签到,获得积分10
1秒前
2秒前
1177发布了新的文献求助30
2秒前
留胡子的霖完成签到,获得积分10
6秒前
韩soso完成签到,获得积分10
6秒前
wwx完成签到,获得积分10
6秒前
LeungYM完成签到 ,获得积分10
6秒前
6秒前
7秒前
FashionBoy应助方1111采纳,获得10
7秒前
wxy应助miemie66采纳,获得200
7秒前
封听白完成签到,获得积分0
8秒前
YANGJIE6完成签到 ,获得积分10
10秒前
zh发布了新的文献求助10
12秒前
Xiao完成签到,获得积分10
13秒前
16秒前
16秒前
zh完成签到,获得积分10
17秒前
18秒前
木木SCI完成签到 ,获得积分10
18秒前
18秒前
21秒前
幸运星发布了新的文献求助10
21秒前
DW发布了新的文献求助10
22秒前
科研通AI2S应助剪影改采纳,获得10
22秒前
wangwenzhe发布了新的文献求助10
23秒前
方1111发布了新的文献求助10
23秒前
23秒前
Haoxiang发布了新的文献求助10
26秒前
科研通AI5应助叶成帷采纳,获得10
27秒前
大个应助禾火采纳,获得10
27秒前
万能图书馆应助c-zhang采纳,获得10
28秒前
雪梨101完成签到,获得积分10
28秒前
郭辉发布了新的文献求助10
28秒前
方1111完成签到,获得积分20
28秒前
华仔应助Regina采纳,获得10
29秒前
29秒前
帅气的璎发布了新的文献求助10
31秒前
Ava应助wangwenzhe采纳,获得10
31秒前
NexusExplorer应助方1111采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782342
求助须知:如何正确求助?哪些是违规求助? 3327852
关于积分的说明 10233274
捐赠科研通 3042733
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876