Training Model for Extended Career Athletes: A Narrative Review

运动员 背景(考古学) 应用心理学 数据提取 医学 叙述性评论 优秀运动员 物理疗法 培训(气象学) 力量训练 梅德林 医学教育 物理医学与康复 心理学 古生物学 重症监护医学 生物 物理 政治学 气象学 法学
作者
Toni Caparrós
出处
期刊:Sports Health: A Multidisciplinary Approach [SAGE Publishing]
卷期号:17 (1): 164-174 被引量:1
标识
DOI:10.1177/19417381241285870
摘要

Context: Today’s elite and professional sports tend to feature older, more seasoned athletes, who have longer sporting careers. As advancing age can potentially limit peak performance, balancing training load is necessary to maintain an optimal state of performance and extend their sports career. Objective: To describe an appropriate training model for extended career athletes. Data Sources: Medline (PubMed), SPORTDiscus, ScienceDirect, Web of Science, and Google Scholar. Study Selection: A search of the literature between January 1, 2015 and November 22, 2023 was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Study Design: Narrative review. Level of Evidence: Level 4. Data Extraction: Data were extracted from studies related to the management of training and performance of athletes with extended and long careers. Results: A total of 21 articles related to extended careers were found. Key themes from these papers included: expertise, biological maturation, and specificity; epidemiology and health; athlete monitoring; strength training; load management and detraining; success management. Conclusion: A training model for extended career athletes should balance the deleterious effects of age with the athletes’ knowledge of, and expertise within, the sport. Designing specific training that accommodates previous injuries, training load intolerances, and caters for quality of life after retirement should be key considerations. Load management strategies for athletes with extended careers should include strength training adaptations to minimize pain, load-response monitoring, a broad range of movement, recovery and intensity activities, and the avoidance of large training load peaks and periods of inactivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingwhitewing完成签到,获得积分10
1秒前
螃螃发布了新的文献求助10
1秒前
神勇的罡发布了新的文献求助10
1秒前
2秒前
陈小小完成签到,获得积分10
2秒前
勤恳的一斩完成签到,获得积分10
2秒前
Rondab应助淡定从凝采纳,获得10
2秒前
3秒前
123完成签到 ,获得积分10
3秒前
3秒前
充电宝应助野性的黑夜采纳,获得10
3秒前
旷野完成签到,获得积分10
3秒前
Syk_发布了新的文献求助10
3秒前
小烦同学完成签到,获得积分10
3秒前
小蘑菇应助Timing采纳,获得10
3秒前
兴奋伟诚完成签到 ,获得积分20
3秒前
nannannan完成签到,获得积分10
4秒前
xxxxxx完成签到,获得积分10
4秒前
浮生发布了新的文献求助10
5秒前
科研助手6应助徐旖旎采纳,获得10
5秒前
研友_CCQ_M完成签到,获得积分10
5秒前
山真页完成签到,获得积分10
7秒前
克林完成签到,获得积分10
7秒前
7秒前
7秒前
白马非马发布了新的文献求助10
7秒前
明天更好完成签到 ,获得积分10
8秒前
健忘芷珊完成签到,获得积分20
8秒前
8秒前
F503完成签到,获得积分10
8秒前
HE完成签到,获得积分20
8秒前
LIDK发布了新的文献求助10
9秒前
岚邑完成签到,获得积分10
9秒前
小二郎应助缥缈的飞扬采纳,获得10
9秒前
9秒前
FD完成签到 ,获得积分10
10秒前
10秒前
与秋逐鹿完成签到,获得积分10
10秒前
11秒前
慕青应助克林采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4002005
求助须知:如何正确求助?哪些是违规求助? 3541408
关于积分的说明 11281207
捐赠科研通 3278945
什么是DOI,文献DOI怎么找? 1808212
邀请新用户注册赠送积分活动 884529
科研通“疑难数据库(出版商)”最低求助积分说明 810431