已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparse Fuzzy C-Means Clustering with Lasso Penalty

Lasso(编程语言) 模糊逻辑 聚类分析 计算机科学 惩罚法 模糊聚类 数学 人工智能 模式识别(心理学) 数学优化 万维网
作者
Shazia Parveen,Miin‐Shen Yang
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:16 (9): 1208-1208
标识
DOI:10.3390/sym16091208
摘要

Clustering is a technique of grouping data into a homogeneous structure according to the similarity or dissimilarity measures between objects. In clustering, the fuzzy c-means (FCM) algorithm is the best-known and most commonly used method and is a fuzzy extension of k-means in which FCM has been widely used in various fields. Although FCM is a good clustering algorithm, it only treats data points with feature components under equal importance and has drawbacks for handling high-dimensional data. The rapid development of social media and data acquisition techniques has led to advanced methods of collecting and processing larger, complex, and high-dimensional data. However, with high-dimensional data, the number of dimensions is typically immaterial or irrelevant. For features to be sparse, the Lasso penalty is capable of being applied to feature weights. A solution for FCM with sparsity is sparse FCM (S-FCM) clustering. In this paper, we propose a new S-FCM, called S-FCM-Lasso, which is a new type of S-FCM based on the Lasso penalty. The irrelevant features can be diminished towards exactly zero and assigned zero weights for unnecessary characteristics by the proposed S-FCM-Lasso. Based on various clustering performance measures, we compare S-FCM-Lasso with the S-FCM and other existing sparse clustering algorithms on several numerical and real-life datasets. Comparisons and experimental results demonstrate that, in terms of these performance measures, the proposed S-FCM-Lasso performs better than S-FCM and existing sparse clustering algorithms. This validates the efficiency and usefulness of the proposed S-FCM-Lasso algorithm for high-dimensional datasets with sparsity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
NexusExplorer应助swjs08采纳,获得10
3秒前
4秒前
明亮梦山完成签到 ,获得积分10
4秒前
拾意发布了新的文献求助10
5秒前
WS完成签到 ,获得积分10
7秒前
8秒前
hyl发布了新的文献求助10
9秒前
9秒前
曦忘完成签到,获得积分10
11秒前
12秒前
15秒前
疯狂阅读发布了新的文献求助10
15秒前
19秒前
爱上叶子的猫完成签到,获得积分10
20秒前
lay驳回了hua应助
20秒前
今后应助执着的河马采纳,获得10
21秒前
21秒前
24秒前
科研小鱼发布了新的文献求助10
27秒前
wsd886完成签到,获得积分10
29秒前
31秒前
wsd886发布了新的文献求助10
33秒前
耶啵完成签到 ,获得积分10
33秒前
原子完成签到,获得积分10
33秒前
33秒前
爆米花应助hyl采纳,获得10
34秒前
NexusExplorer应助keyan_xiaojiang采纳,获得10
34秒前
CCsouljump完成签到 ,获得积分10
35秒前
35秒前
35秒前
Sicie完成签到,获得积分10
38秒前
gb发布了新的文献求助10
38秒前
乐观画板发布了新的文献求助10
38秒前
swjs08发布了新的文献求助10
39秒前
药剂机智小仓鼠完成签到,获得积分10
42秒前
Ysj完成签到,获得积分10
46秒前
科研助手6应助wdlc采纳,获得20
47秒前
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840587
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525349
捐赠科研通 3102300
什么是DOI,文献DOI怎么找? 1708729
邀请新用户注册赠送积分活动 822662
科研通“疑难数据库(出版商)”最低求助积分说明 773465