Multi-Modal Object Detection Method Based on Dual-Branch Asymmetric Attention Backbone and Feature Fusion Pyramid Network

棱锥(几何) 对偶(语法数字) 计算机科学 情态动词 人工智能 特征(语言学) 计算机视觉 融合 对象(语法) 模式识别(心理学) 数学 几何学 材料科学 文学类 哲学 语言学 高分子化学 艺术
作者
Jinpeng Wang,Nan Su,Chunhui Zhao,Yiming Yan,Shou Feng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (20): 3904-3904 被引量:6
标识
DOI:10.3390/rs16203904
摘要

With the simultaneous acquisition of the infrared and optical remote sensing images of the same target becoming increasingly easy, using multi-modal data for high-performance object detection has become a research focus. In remote sensing multi-modal data, infrared images lack color information, it is hard to detect difficult targets with low contrast, and optical images are easily affected by illuminance. One of the most effective ways to solve this problem is to integrate multi-modal images for high-performance object detection. The challenge of fusion object detection lies in how to fully integrate multi-modal image features with significant modal differences and avoid introducing interference information while taking advantage of complementary advantages. To solve these problems, a new multi-modal fusion object detection method is proposed. In this paper, the method is improved in terms of two aspects: firstly, a new dual-branch asymmetric attention backbone network (DAAB) is designed, which uses a semantic information supplement module (SISM) and a detail information supplement module (DISM) to supplement and enhance infrared and RGB image information, respectively. Secondly, we propose a feature fusion pyramid network (FFPN), which uses a Transformer-like strategy to carry out multi-modal feature fusion and suppress features that are not conducive to fusion during the fusion process. This method is a state-of-the-art process for both FLIR-aligned and DroneVehicle datasets. Experiments show that this method has strong competitiveness and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Sarah采纳,获得10
刚刚
Sijie发布了新的文献求助10
1秒前
乐观凡梅发布了新的文献求助10
1秒前
2秒前
子车茗应助长青采纳,获得20
2秒前
3秒前
上帝发誓完成签到,获得积分10
3秒前
Lucas应助小科采纳,获得10
3秒前
QiQi应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
ZOE应助科研通管家采纳,获得20
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Dean应助科研通管家采纳,获得50
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
蔡睿轩完成签到,获得积分10
7秒前
zz发布了新的文献求助10
8秒前
zhui发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助May_9527采纳,获得10
9秒前
10秒前
顾矜应助博伦llll采纳,获得10
10秒前
Sijie完成签到,获得积分20
10秒前
Lucas应助武雨寒采纳,获得10
11秒前
ohh发布了新的文献求助10
11秒前
吴泽斌完成签到,获得积分10
11秒前
曹晨发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170420
求助须知:如何正确求助?哪些是违规求助? 4361183
关于积分的说明 13578837
捐赠科研通 4208380
什么是DOI,文献DOI怎么找? 2308143
邀请新用户注册赠送积分活动 1307537
关于科研通互助平台的介绍 1254343