Exploring the anti-hepatocellular carcinoma effects of Xianglian Pill: integrating network pharmacology and RNA sequencing via in silico and in vitro studies

生物信息学 肝细胞癌 体外 药理学 计算生物学 核糖核酸 生物 生物信息学 癌症研究 遗传学 基因
作者
Jihan Huang,Ruipeng Shi,Feiyu Chen,Hor‐Yue Tan,Jinbin Zheng,Ning Wang,Ran Li,Yulin Wang,Tao Yang,Yibin Feng,Zhangfeng Zhong
出处
期刊:Phytomedicine [Elsevier]
卷期号:133: 155905-155905 被引量:8
标识
DOI:10.1016/j.phymed.2024.155905
摘要

Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orchid发布了新的文献求助10
1秒前
1秒前
fananan发布了新的文献求助10
2秒前
3秒前
现代半莲完成签到,获得积分20
3秒前
3秒前
李健应助张潇潇采纳,获得10
4秒前
4秒前
guoxm完成签到,获得积分10
4秒前
oudian完成签到,获得积分10
4秒前
shice951229完成签到,获得积分10
4秒前
在水一方应助甜甜亦丝采纳,获得10
5秒前
5秒前
5秒前
务实的天薇关注了科研通微信公众号
6秒前
tanhaowen发布了新的文献求助10
6秒前
7秒前
7秒前
Dotson发布了新的文献求助10
8秒前
你找谁哇发布了新的文献求助10
8秒前
9秒前
ccy发布了新的文献求助10
9秒前
10秒前
wangdongyang完成签到,获得积分10
10秒前
Lucas应助droke采纳,获得10
10秒前
脑洞疼应助眯眯眼的百川采纳,获得10
11秒前
现代半莲发布了新的文献求助10
12秒前
oudian发布了新的文献求助10
12秒前
土豆发布了新的文献求助10
13秒前
13秒前
李健应助乔木木采纳,获得10
13秒前
zzz发布了新的文献求助10
14秒前
Ava应助龙眼采纳,获得10
14秒前
fananan完成签到,获得积分10
15秒前
msl2023发布了新的文献求助10
17秒前
Archer完成签到,获得积分10
17秒前
tanhaowen发布了新的文献求助10
18秒前
19秒前
学术虫发布了新的文献求助10
19秒前
传奇3应助squirrelcone采纳,获得30
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342499
求助须知:如何正确求助?哪些是违规求助? 4478349
关于积分的说明 13938989
捐赠科研通 4374885
什么是DOI,文献DOI怎么找? 2403825
邀请新用户注册赠送积分活动 1396427
关于科研通互助平台的介绍 1368562