Exploring the anti-hepatocellular carcinoma effects of Xianglian Pill: integrating network pharmacology and RNA sequencing via in silico and in vitro studies

生物信息学 肝细胞癌 体外 药理学 计算生物学 核糖核酸 生物 生物信息学 癌症研究 遗传学 基因
作者
Jihan Huang,Ruipeng Shi,Feiyu Chen,Hor‐Yue Tan,Jinbin Zheng,Ning Wang,Ran Li,Yulin Wang,Tao Yang,Yibin Feng,Zhangfeng Zhong
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:133: 155905-155905 被引量:2
标识
DOI:10.1016/j.phymed.2024.155905
摘要

Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
bicargo完成签到,获得积分10
3秒前
5秒前
科研通AI5应助xr采纳,获得10
5秒前
haizz完成签到 ,获得积分10
6秒前
科研通AI2S应助奋斗的绿凝采纳,获得10
7秒前
7秒前
乐乐应助兰先生采纳,获得10
8秒前
哭泣藏花完成签到 ,获得积分10
10秒前
gggja发布了新的文献求助20
10秒前
缺粥发布了新的文献求助10
12秒前
搞怪的音响完成签到 ,获得积分10
15秒前
15秒前
高贵夏之完成签到,获得积分20
16秒前
17秒前
zzz完成签到 ,获得积分10
20秒前
zty123发布了新的文献求助10
21秒前
唠叨的代天完成签到 ,获得积分10
25秒前
25秒前
27秒前
28秒前
Sandro完成签到,获得积分10
28秒前
29秒前
sss2021发布了新的文献求助20
29秒前
29秒前
30秒前
32秒前
hyc发布了新的文献求助10
33秒前
高数数完成签到 ,获得积分10
33秒前
朴素元珊发布了新的文献求助10
34秒前
虚幻莫茗发布了新的文献求助10
34秒前
kyJYbs发布了新的文献求助10
35秒前
畅快的长颈鹿完成签到,获得积分10
35秒前
笨笨绿柳完成签到,获得积分10
36秒前
科研通AI5应助默默的无敌采纳,获得10
38秒前
38秒前
斯文败类应助abc97采纳,获得10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339