已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring the anti-hepatocellular carcinoma effects of Xianglian Pill: Integrating network pharmacology and RNA sequencing via in silico and in vitro studies

生物信息学 肝细胞癌 体外 药理学 计算生物学 核糖核酸 生物 生物信息学 癌症研究 遗传学 基因
作者
Jihan Huang,Ruipeng Shi,Feiyu Chen,Hor‐Yue Tan,Jinbin Zheng,Ning Wang,Ran Li,Yulin Wang,Tao Yang,Yibin Feng,Zhangfeng Zhong
出处
期刊:Phytomedicine [Elsevier]
卷期号:133: 155905-155905 被引量:10
标识
DOI:10.1016/j.phymed.2024.155905
摘要

Liver cancer represents a most common and fatal cancer worldwide. Xianglian Pill (XLP) is an herbal formula holding great promise in clearing heat for treating diseases in an integrative and holistic way. However, due to the complex constituents and multiple targets, the exact molecular mechanisms of action of XLP are still unclear. This study is focused on hepatocellular carcinoma (HCC), the most common type of liver cancer. The aim of this study is to develop a fast and efficient model to investigate the anti-HCC effects of XLP, and its underlying mechanisms. HepG2, Hep3B, Mahlavu, HuH-7, or Li-7 cells were employed in the studies. The ingredients were analyzed using liquid chromatography tandem mass spectrometry (LC-MS). RNA sequencing combined with network pharmacology was used to elucidate the therapeutic mechanism of XLP in HCC via in silico and in vitro studies. An approach was constructed to improve the accuracy of prediction in network pharmacology by combining big data and omics. First, we identified 13 potential ingredients in the serum of XLP-administered rats using LC-MS. Then the network pharmacology was performed to predict that XLP demonstrates anti-HCC effects via targeting 94 genes involving in 13 components. Modifying the database thresholds might impact the accuracy of network pharmacology analysis based on RNA sequencing data. For instance, when the matching rate peak is 0.43, the correctness rate peak is 0.85. Moreover, 9 components of XLP and 6 relevant genes have been verified with CCK-8 and RT-qPCR assay, respectively. Based on the crossing studies of RNA sequencing and network pharmacology, XLP was found to improve HCC through multiple targets and pathways. Additionally, the study provides a way to optimize network pharmacology analysis in herbal medicine research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖心人士完成签到 ,获得积分10
1秒前
1秒前
可爱的函函应助左丘世立采纳,获得10
2秒前
Yang发布了新的文献求助10
2秒前
zzz完成签到 ,获得积分10
4秒前
4秒前
5秒前
惜曦完成签到 ,获得积分10
9秒前
ASSFree完成签到 ,获得积分10
10秒前
娜娜发布了新的文献求助10
10秒前
科研通AI6应助悲凉的素采纳,获得10
11秒前
oO完成签到 ,获得积分10
11秒前
totoro完成签到,获得积分10
12秒前
kk完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
ouo完成签到,获得积分20
16秒前
16秒前
walker完成签到,获得积分10
16秒前
娜娜完成签到,获得积分10
16秒前
Jerry发布了新的文献求助10
16秒前
小二发布了新的文献求助20
17秒前
Dai关闭了Dai文献求助
17秒前
善学以致用应助ppg123采纳,获得10
19秒前
Persist完成签到 ,获得积分10
19秒前
有何可不发布了新的文献求助10
20秒前
猫猫发布了新的文献求助10
20秒前
就爱吃抹茶完成签到 ,获得积分10
21秒前
动听清炎完成签到,获得积分10
21秒前
酷波er应助繁荣的紫山采纳,获得30
22秒前
悲凉的素完成签到,获得积分10
22秒前
maguodrgon发布了新的文献求助200
22秒前
23秒前
菅晓硕发布了新的文献求助10
27秒前
CipherSage应助彬子采纳,获得10
29秒前
大个应助迷人的不正采纳,获得10
29秒前
土星完成签到,获得积分20
29秒前
30秒前
Persist6578完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713639
求助须知:如何正确求助?哪些是违规求助? 5217280
关于积分的说明 15271623
捐赠科研通 4865404
什么是DOI,文献DOI怎么找? 2612078
邀请新用户注册赠送积分活动 1562278
关于科研通互助平台的介绍 1519405