离子电导率
材料科学
电导率
电解质
异质结
离子
离子键合
半导体
热传导
氢氧化物
功率密度
大气温度范围
氧气
分析化学(期刊)
光电子学
无机化学
电极
化学
热力学
功率(物理)
物理化学
复合材料
物理
色谱法
有机化学
作者
Y.D. Zhang,Decai Zhu,Zhonglong Zhao,Jiamei Liu,Yuzhao Ouyang,Jiangyu Yu,Zhongqing Liu,Xixi Bai,Nan Wang,Lin Zhuang,Wu-Ming Liu,Chengjun Zhu
出处
期刊:Advanced Science
[Wiley]
日期:2024-07-21
卷期号:11 (35): e2401130-e2401130
被引量:4
标识
DOI:10.1002/advs.202401130
摘要
Abstract Semiconductor ion fuel cells (SIFCs) have demonstrated impressive ionic conductivity and efficient power generation at temperatures below 600 °C. However, the lack of understanding of the ionic conduction mechanisms associated with composite electrolytes has impeded the advancement of SIFCs toward lower operating temperatures. In this study, a CeO 2 /β″‐Al 2 O 3 heterostructure electrolyte is introduced, incorporating β″‐Al 2 O 3 and leveraging the local electric field (LEF) as well as the manipulation of the melting point temperature of carbonate/hydroxide (C/H) by Na + and Mg 2+ from β″‐Al 2 O 3 . This design successfully maintains swift interfacial conduction of oxygen ions at 350 °C. Consequently, the fuel cell device achieved an exceptional ionic conductivity of 0.019 S/cm and a power output of 85.9 mW/cm 2 at 350 °C. The system attained a peak power density of 1 W/cm 2 with an ultra‐high ionic conductivity of 0.197 S/cm at 550 °C. The results indicate that through engineering the LEF and incorporating the lower melting point C/H, there approach effectively observed oxygen ion transport at low temperatures (350 °C), effectively overcoming the issue of cell failure at temperatures below 419 °C. This study presents a promising methodology for further developing high‐performance semiconductor ion fuel cells in the low temperature range of 300–600 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI